The study population contains 145 patients who were prospectively recruited for coronary CT angiography (CCTA) and fundoscopy. This study first examined the association between retinal vascular changes and the Coronary Artery Disease Reporting and Data System (CAD-RADS) as assessed on CCTA. Then, we developed a graph neural network (GNN) model for predicting the CAD-RADS as a proxy for coronary artery disease. The CCTA scans were stratified by CAD-RADS scores by expert readers, and the vascular biomarkers were extracted from their fundus images. Association analyses of CAD-RADS scores were performed with patient characteristics, retinal diseases, and quantitative vascular biomarkers. Finally, a GNN model was constructed for the task of predicting the CAD-RADS score compared to traditional machine learning (ML) models. The experimental results showed that a few retinal vascular biomarkers were significantly associated with adverse CAD-RADS scores, which were mainly pertaining to arterial width, arterial angle, venous angle, and fractal dimensions. Additionally, the GNN model achieved a sensitivity, specificity, accuracy and area under the curve of 0.711, 0.697, 0.704 and 0.739, respectively. This performance outperformed the same evaluation metrics obtained from the traditional ML models (p < 0.05). The data suggested that retinal vasculature could be a potential biomarker for atherosclerosis in the coronary artery and that the GNN model could be utilized for accurate prediction.
An internally-illuminated photobioreactor was designed to maximize the astaxanthin production by Haematococcus pluvialis. Four optimization steps were conducted: 1. light wavelength 2. light intensity 3. astaxanthin formation and 4. astaxanthin extraction methods. Efficient biomass production of H. pluvialis of 4.58 ± 0.15 × 10 5 cells/ml and dry biomass of 520 ± 12.5 mg/L was accomplished under red LED light (660 nm) with 70 µmol m-2 s-1. Besides, the biomass production can be optimized to 5.31 ± 0.15 × 10 5 cells/ml and dry biomass of 680 ± 10.5 mg/L under 140 µmol m-2 s-1 in the light intensity of 70-210 µmol m-2 s-1. Furthermore, the astaxanthin accumulation was significant with 7 days encystment under 140 µmol m-2 s-1 blue LED lights. For extraction method, using hydrochloric acid could obtain the highest astaxanthin yield of 3.85 ± 0.05% (% to dry weight). Further studies were proposed whatever such photobioreactor can be applied to different microalgal strains.
This study aims to propose a pooling approach to simulate the compulsory universal RT-PCR test in Hong Kong and explore the feasibility of implementing the pooling method on a household basis. The mathematical model is initially verified, and then the simulation is performed under different prevalence rates and pooled sizes. The simulated population is based in Hong Kong. The simulation included 10,000,000 swab samples, with a representative distribution of populations in Hong Kong. The samples were grouped into a batch size of 20. If the entire batch is positive, then the group is further divided into an identical group size of 10 for re-testing. Different combinations of mini-group sizes were also investigated. The proposed pooling method was extended to a household basis. A representative from each household is required to perform the RT-PCR test. Results of the simulation replications, indicate a significant reduction (p < 0.001) of 83.62, 64.18, and 48.46% in the testing volume for prevalence rate 1, 3, and 5%, respectively. Combined with the household-based pooling approach, the total number of RT-PCR is 437,304, 956,133, and 1,375,795 for prevalence rates 1, 3, and 5%, respectively. The household-based pooling strategy showed efficiency when the prevalence rates in the population were low. This pooling strategy can rapidly screen people in high-risk groups for COVID-19 infections and quarantine those who test positive, even when time and resources for testing are limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.