Theranostics (therapy + diagnosis) targeting prostate-specific membrane antigen (PSMA) is an emerging therapeutic modality that could alter treatment strategies for prostate cancer. Although PSMA-targeted radioligand therapy (PSMA-RLT) has a highly therapeutic effect on PSMA-positive tumor tissue, the efficacy of PSMA-RLT depends on PSMA expression. Moreover, predictors of treatment response other than PSMA expression are under investigation. Therefore, the optimal patient population for PSMA-RLT remains unclear. This review provides an overview of the current status of theranostics for prostate cancer, focusing on PSMA ligands. In addition, we summarize various findings regarding the efficacy and problems of PSMA-RLT and discuss the optimal patient for PSMA-RLT.
In the treatment of cancer, understanding the disease status, or accurate staging, is extremely important, and various imaging techniques are used. Computed tomography (CT), magnetic resonance imaging, and scintigrams are commonly used for solid tumors, and advances in these technologies have improved the accuracy of diagnosis. In the clinical practice of prostate cancer, CT and bone scans have been considered especially important for detecting metastases. Nowadays, CT and bone scans are called conventional methods because positron emission tomography (PET), especially prostate-specific membrane antigen (PSMA)/PET, is extremely sensitive in detecting metastases. Advances in functional imaging, such as PET, are advancing the diagnosis of cancer by allowing information to be added to the morphological diagnosis. Furthermore, PSMA is known to be upregulated depending on the malignancy of the prostate cancer grade and resistance to therapy. Therefore, it is often highly expressed in castration-resistant prostate cancer (CRPC) with poor prognosis, and its therapeutic application has been attempted for around two decades. PSMA theranostics refers to a type of cancer treatment that combines both diagnosis and therapy using a PSMA. The theranostic approach uses a radioactive substance attached to a molecule that targets PSMA protein on cancer cells. This molecule is injected into the patient’s bloodstream and can be used for both imaging the cancer cells with a PET scan (PSMA PET imaging) and delivering radiation directly to the cancer cells (PSMA-targeted radioligand therapy), with the aim of minimizing damage to healthy tissue. Recently, in an international phase III trial, the impact of 177Lu-PSMA-617 therapy was studied in patients with advanced PSMA-positive metastatic CRPC who had previously been treated with specific inhibitors and regimens. The trial revealed that 177Lu-PSMA-617 significantly extended both progression-free survival and overall survival compared to standard care alone. Although there was a higher incidence of grade 3 or above adverse events with 177Lu-PSMA-617, it did not negatively impact the patients’ quality of life. PSMA theranostics is currently being studied and used primarily for the treatment of prostate cancer, but it has the potential to be applied to other types of cancers as well.
Benign prostatic hyperplasia (BPH) is a chronic proliferative disease showing stromal-dominant proliferation. However, the detailed proliferation mechanism has remained unclear. Although aging and androgen have been reported as definitive risk factors for BPH, recent studies have focused on the involvement of androgen-independent factors. Androgen-independent factors include ischemia, oxidative stress, metabolic syndrome, infection, autoimmune reactions, and inflammation, with inflammation in BPH tissues playing a central role in the BPH proliferative process. Inflammation in BPH tissues by various factors finally leads to tissue remodeling and stromal proliferation through the wound healing process of the prostate. To elucidate the proliferative mechanism of BPH, a study using whole-genome gene expression analysis in a stromal-dominant BPH rat model was performed and showed that immune response-related pathways and complement classical pathways are activated. Furthermore, expression analysis using this BPH rat model showed that the autoimmune reaction triggered complement pathway activation in the proliferative process of BPH. BPH is a multifactorial disease, and understanding the role of androgen-independent factors including immune responses contributes to elucidating the pathogenesis of BPH. Androgen-independent factors may lead to new therapeutic targets for BPH, and further development of this research is expected.
Background/Aim: The aim of the study was to evaluate the risk of venous thromboembolism (VTE) after robot-assisted radical prostatectomy (RARP) and discuss whether a uniform prophylaxis for VTE after radical prostatectomy is also suitable for robotic surgery. On this context, we investigated the incidence and risk factors of VTE, including asymptomatic events, after RARP compared to transurethral resection of bladder tumor (TUR-BT). Patients and Methods: The participants were 209 patients with localized prostate cancer who underwent RARP, and 93 patients who underwent TUR-BT as controls. The incidence and risk factors of VTE, including deep vein thrombosis and pulmonary embolism, were systemically investigated seven days after surgery using contrast-enhanced computed tomography. Results: Of the 209 RARP patients, 5.7% (12/209) patients had VTE. All events were asymptomatic and the incidence of VTE was not significantly different between the two surgeries (p=0.90). In multivariate analyses, neoadjuvant androgen deprivation therapy (ADT) (p=0.006), D-dimer value on postoperative day 1 (p=0.001) and lymphocele formation (p=0.043) were significantly associated with VTE after RARP. Conclusion: The risk of VTE after RARP might not be so high and uniform prophylaxis might not be suitable for RARP because it might be the same as that after transurethral resection for bladder tumors. However, neoadjuvant ADT, high D-dimer levels after surgery and lymphocele formation should be noted as risk factors of VTE after RARP.
We aimed to investigate the relationship between mast cell (MC) infiltration into the bladder with urothelial barrier dysfunction and bladder hyperactivity in a chronic bladder ischemia (CBI) rat model. We compared CBI rats (CBI group; n = 10) with normal rats (control group; n = 10). We measured the expression of mast cell tryptase (MCT) and protease-activated receptor 2 (PAR2), which are correlated with C fiber activation via MCT, and Uroplakins (UP Ia, Ib, II and III), which are critical to urothelial barrier function, via Western blotting. The effects of FSLLRY-NH2, a PAR2 antagonist, administered intravenously, on the bladder function of CBI rats were evaluated with a cystometrogram. In the CBI group, the MC number in the bladder was significantly greater (p = 0.03), and the expression of MCT (p = 0.02) and PAR2 (p = 0.02) was significantly increased compared to that of the control group. The 10 μg/kg FSLLRY-NH2 injection significantly increased the micturition interval of CBI rats (p = 0.03). The percentage of UP-II-positive cells on the urothelium with immunohistochemical staining was significantly lower in the CBI group than in the control group (p < 0.01). Chronic ischemia induces urothelial barrier dysfunction via impairing UP II, consequently inducing MC infiltration into the bladder wall and increased PAR2 expression. PAR2 activation by MCT may contribute to bladder hyperactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.