Although iodine is not an essential nutrient for higher plants, their roots take up and transport the element. However, the exact mechanisms involved in iodine uptake and metabolism in higher plants have yet to be elucidated. In this study, we compared two cultivars differing in iodine tolerance (“Nipponbare” and “Gohyakumangoku”) to increasing levels of I− and IO−3 in the root solutions of water-cultured rice (Oryza sativa L.). We found that IO−3 added to the root solutions was converted to I− in the presence of roots. Iodate reduction occurred over the course of several hours. Furthermore, the iodate reduction activity of “Nipponbare” (iodine-sensitive) and “Gohyakumangoku” (iodine-tolerant) roots increased after adding IO−3 or I−. The roots of barley and soybean also showed iodate reduction activity and the activity responded to iodine treatment either with IO−3 and I−. This study suggests that plant roots biologically reduce iodate to iodide and indicates that the iodate reduction activity of roots responds to external iodine conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.