Visual saliency detection is a useful technique for predicting, which regions humans will tend to gaze upon in any given image. Over the last several decades, numerous algorithms for automatic saliency detection have been proposed and shown to work well on both synthetic and natural images. However, two key challenges remain largely unaddressed: 1) How to improve the relatively low predictive performance for images that contain large objects and 2) how to perform saliency detection on a wider variety of images from various categories without training. In this paper, we propose a new saliency detection algorithm that addresses these challenges. Our model first detects potentially salient regions based on multiscale extrema of local perceived color differences measured in the CIELAB color space. These extrema are highly effective for estimating the locations, sizes, and saliency levels of candidate regions. The local saliency candidates are further refined via two global extrema-based features, and then a Gaussian mixture is used to generate the final saliency map. Experimental validation on the extensive CAT2000 data set demonstrates that our proposed method either outperforms or is highly competitive with prior approaches, and can perform well across different categories and object sizes, while remaining training-free.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.