N,N-Dimethylformamide (DMF) is an essential solvent in industries and pharmaceutics. Its market size range was estimated to be 2 billion US dollars in 2022. Monitoring DMF in solution environments in real time is significant because of its toxicity. However, DMF is not a redox-active molecule; therefore, selective monitoring DMF in solutions in real time requires an unprecedented design at the scale of atomic resolution. In this paper, we propose a selective DMF sensor using a molybdenum disulfide (MoS2) field-effect transistor (FET). The sensor responds to DMF molecules, but not to similar molecules of formamide, N,N-diethylformamide, and N,N-dimethylacetamide. The plausible atomic mechanism is the oxygen substitution sites on MoS2, on which the DMF molecule shows exceptional orientation. The thin structure of MoS2-FET can be incorporated into a microfluidic chamber, which leads to DMF monitoring in real time by exchanging solutions subsequently. The designed device shows DMF monitoring in NaCl ionic solutions from 1 to 200 L/mL. This work proposes the concept of selectively monitoring redox-inactive molecules based on the non-ideal atomic affinity site on the surface of two-dimensional semiconductors.
N,N-Dimethylformamide (DMF) is an essential solvent in industries and pharmaceutics. Its market size range was estimated to be 2 billion U.S. dollars in 2022. Monitoring DMF in solution environments in real time is significant because of its toxicity. However, DMF is not a redox-active molecule; therefore, selective monitoring of DMF in solutions, especially in polar aqueous solutions, in real time is extremely difficult. In this paper, we propose a selective DMF sensor using a molybdenum disulfide (MoS2) field-effect transistor (FET). The sensor responds to DMF molecules but not to similar molecules of formamide, N,N-diethylformamide, and N,N-dimethylacetamide. The plausible atomic mechanism is the oxygen substitution sites on MoS2, on which the DMF molecule shows an exceptional orientation. The thin structure of MoS2–FET can be incorporated into a microfluidic chamber, which leads to DMF monitoring in real time by exchanging solutions subsequently. The designed device shows DMF monitoring in NaCl ionic solutions from 1 to 200 μL/mL. This work proposes the concept of selectively monitoring redox-inactive molecules based on the nonideal atomic affinity site on the surface of two-dimensional semiconductors.
Mechanical exfoliation methods of two-dimensional materials have been an essential process for advanced device and fundamental sciences. However, the exfoliation method usually generates various thick flakes, and a bunch of thick bulk flakes usually covers an entire substrate. Here, we developed a method to selectively isolate mono- to quadlayers of transition metal dichalcogenides (TMDCs) by sonication in organic solvents. The analysis reveals the importance of low interface energies between solvents and TMDCs, leading to effective removal of bulk flakes under sonication. Importantly, a monolayer adjacent to bulk flakes shows cleavage at the interface, and the monolayer can be selectively isolated on the substrate. This approach can extend to preparing a monolayer device with crowded 17 electrode fingers surrounding the monolayer and for the measurement of electrostatic device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.