Immune and inflammatory systems are controlled by multiple cytokines, including interleukins (ILs) and interferons. These cytokines exert their biological functions through Janus tyrosine kinases and signal transducer and activator of transcription (STAT) transcription factors. We recently identified two intrinsic Janus kinase (JAK) inhibitors, JAK binding protein (JAB; also referred to as suppressor of cytokine signaling [SOCS1]/STAT-induced STAT inhibitor [SSI1]) and cytokine-inducible SH2 protein (CIS)3 (or SOCS3/SSI3), which play an essential role in the negative regulation of cytokine signaling. We have investigated the role of STATs and these JAK inhibitors in intestinal inflammation. Among STAT family members, STAT3 was most strongly tyrosine phosphorylated in human ulcerative colitis and Crohn's disease patients as well as in dextran sulfate sodium (DSS)-induced colitis in mice. Development of colitis as well as STAT3 activation was significantly reduced in IL-6–deficient mice treated with DSS, suggesting that STAT3 plays an important role in the perpetuation of colitis. CIS3, but not JAB, was highly expressed in the colon of DSS-treated mice as well as several T cell–dependent colitis models. To define the physiological role of CIS3 induction in colitis, we developed a JAB mutant (F59D-JAB) that overcame the inhibitory effect of both JAB and CIS3 and created transgenic mice. DSS induced stronger STAT3 activation and more severe colitis in F59D-JAB transgenic mice than in their wild-type littermates. These data suggest that hyperactivation of STAT3 results in severe colitis and that CIS3 plays a negative regulatory role in intestinal inflammation by downregulating STAT3 activity.
In a randomized, placebo-controlled trial, we found 8 weeks of IN (0.5-2.0 g per day) to be effective in inducing a clinical response in patients with UC. However, IN should not yet be used because of the potential for adverse effects, including pulmonary arterial hypertension. Clinical Trials Registry no: UMIN000021439 (http://www.umin.ac.jp/ctr/).
Activation of the IL-6/Stat3 via IL-6 trans-signaling plays an important role in the pathogenesis of inflammatory bowel disease. Colitis-associated cancer (CAC) is a large bowel cancer and occurs with long-standing inflammatory bowel disease. The role of the IL-6/Stat3 in the development of CAC has not been fully understood. We investigate whether IL-6 trans-signaling contributes to the development of CAC using a mouse colitis-associated premalignant cancer (CApC) model. Chronic colitis (CC) was induced in BALB/c mice using dextran sodium sulfate. CApC was induced by dextran sodium sulfate treatment to CC-affected mice. IL-6 expression was determined by quantitative RT-PCR and immunofluorescence staining in colon. Phospho-Stat3 expression was examined by Western blotting and immunofluorescence analysis. The expression of IL-6 receptors (i.e., the IL-6R α-chain and gp130) and tumor necrosis factor-α converting enzyme in the colon was examined by laser-capture microdissection and immunofluorescence staining. Soluble IL-6Rα (sIL-6Rα) was examined by Western blotting of epithelial cell-depleted colonic tissues. We also investigated whether a soluble gp130-Fc fusion protein could prevent CApC. IL-6 expression was increased in the colon of CC- and CApC-affected mice and was restricted to lamina propria-macrophages. The expression of IL-6Rα and tumor necrosis factor-α converting enzyme was increased in the lamina propria CD11b-macrophages of CC-affected mice. sIL-6Rα expression was also increased in these tissues. Reduced levels of IL-6Rα generation were observed in the colonic epithelial cells of CC- and CApC-affected mice and were associated with the increased expression of gp130 and phospho-Stat3. Treatment with soluble gp130Fc significantly reduced the CApC. IL-6 trans-signaling in epithelial cells induced by macrophage-derived IL-6/sIL-6Rα plays a crucial role in the development of CAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.