Stationary inner iterations in combination with Krylov subspace methods are proposed for overdetermined least squares problems. The inner iterations are efficient in terms of computational work and memory and also serve as powerful preconditioners for ill-conditioned and rank-deficient problems. Theoretical justifications for using the inner iterations as preconditioners are presented. Numerical experiments on overdetermined sparse least squares problems show that the proposed methods outperform previous methods, especially for ill-conditioned and rank-deficient problems.
We apply novel inner-iteration preconditioned Krylov subspace methods to the interior-point algorithm for linear programming (LP). Inner-iteration preconditioners recently proposed by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear equations solved in the final phase of interior-point iterations. The Krylov subspace methods do not suffer from rank-deficiency and therefore no preprocessing is necessary even if rows of the constraint matrix are not linearly independent. By means of these methods, a new interior-point recurrence is proposed in order to omit one matrix-vector product at each step. Extensive numerical experiments are conducted over diverse instances of 140 LP problems including the Netlib, QAPLIB, Mittelmann and Atomizer Basis Pursuit collections. The largest problem has 434,580 unknowns. It turns out that our implementation is more robust than the standard public domain solvers SeDuMi (Self-Dual Minimization), SDPT3 (Semidefinite Programming Toh-Todd-Tütüncü) and the LSMR iterative solver in PDCO (Primal-Dual Barrier Method for Convex Objectives) without increasing CPU time. The proposed interior-point method based on iterative solvers succeeds in solving a fairly large number of LP instances from benchmark libraries under the standard stopping criteria. The work also presents a fairly extensive benchmark test for several renowned solvers including direct and iterative solvers.
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES does not always perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear discrete ill-posed problems. The FGMRES method, proposed by Saad, is a generalization of GMRES that allows larger flexibility in the choice of solution subspace than GMRES. This paper explores application of FGMRES to the solution of linear discrete ill-posed problems. Numerical examples illustrate that FGMRES with a suitably chosen solution subspace may determine approximate solutions of higher quality than commonly applied iterative methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.