Infrared spectra of the water clusters have been measured in the N2 + O2 matrix. The aggregation process of water in the matrix has been monitored by annealing the deposited samples up to 40 K and UV irradiation. The monomer, dimer, cyclic trimer and cyclic pentamer are found as water clusters in the matrix. For the hexamer, several structures such as chair, cage, prism, bag 1 and/or book 1 are likely to exist. By UV irradiation, the cyclic pentamer is predominantly formed from the monomer and dimer. On the other hand, by annealing the deposited sample, several hexamers are formed. The theoretical calculation for water clusters has revealed that the formation of one hydrogen bonding in a hydrogen-bonded chain cooperatively enhances or diminishes the strength of another hydrogen bond. Both proton donor (D) and acceptor (A) participating in a hydrogen-bonding pair DA are capable of forming hydrogen bonding with the other water molecules; D can additionally accept two protons and donate one proton, and A can additionally donate two protons and accept one proton. We have proposed the classification of hydrogen-bonding patterns considering the cooperativity, denoting as d'a'DAd''a'', where d and a are integers indicating the number of proton donors and acceptors to D (the single prime) and A (the double prime), respectively. Then, a magnitude given by MOH = -d' + a' + d'' - a'' has been introduced, which is very useful for connecting the hydrogen-bonding patterns to their OH wavenumbers. As a result, it is revealed that the OH stretching bands of water clusters are characterized by eight indicators (free and MOH = -2, -1, 0, 1, 2, 3 and 4). The classification proposed here is applicable to the OH band analysis for the hydrogen-bonded water and alcohols in a condensed phase.
Experimental evidence for intramolecular blue-shifting C-H...O hydrogen bonding is presented. Argon matrix-isolation infrared spectra of 1-methoxy-2-(dimethylamino)ethane exhibit a band at 3016.5 cm-1. Spectral behavior with annealing indicates that this band is assigned to the most stable conformer, trans-gauche-(trans|gauche'), with an intramolecular C-H...O hydrogen bond. Density functional calculations show that this band arises from the stretching vibration of the C-H bond participating in the formation of the C-H...O hydrogen bond. The C-H bond is shortened by 0.004 A, and the C-H stretching band is blue-shifted by at least 35 cm-1 on the formation of the hydrogen bond. The (C)H...O distance is calculated as 2.38 A, which is shorter than the corresponding van der Waals separation by 0.3 A.
The OH stretching (nu(OH)) band of methanol observed in condensed phase has been analyzed in terms of hydrogen-bonding patterns. Quantum chemical calculations for methanol clusters have revealed that broadening of the nu(OH) envelope is reasonably reproduced by considering nearest and next-nearest neighbor interactions through hydrogen bonding. Because the hydrogen bond formed between donor (D) and acceptor (A) is cooperatively strengthened or weakened by a newly formed hydrogen bond at D or A, we have proposed the following notation for hydrogen-bonding patterns of monohydric alcohols: a(D)DAd(A)a(A), where a is the number of protons accepted by D (a(D)) or A (a(A)), and d(A) is the number of protons donated by A. The indicator of the hydrogen-bond strength, which is given by M(OH) = a(D) + d(A) - a(A), is correlated well with the nu(OH) wavenumber of the methanol molecule D participating in the a(D)DAd(A)a(A) pattern. The correlation between M(OH) and the hydrogen-bonding energy of the a(D)DAd(A)a(A) pattern has also been deduced from the calculation results for the clusters. The nu(OH) bands of methanol measured in the CCl4 solution and pure liquid have been successfully analyzed by the method proposed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.