Using a multitrait animal model BLUP, selection was conducted over seven generations for growth rate (ADG), real-time ultrasound LM area (LMA), backfat thickness (BF), and intramuscular fat content (IMF) to develop a new line of purebred Duroc pigs with enhanced meat production and meat quality. This selection experiment examined 543 slaughtered pigs (394 barrows and 153 gilts) from the first to the seventh generation for meat quality traits. Further, electric impedance and collagen content of loin meat were measured from the fourth to sixth generation. The present study was intended to estimate genetic parameters of the correlated traits of tenderness (TEND), meat color (pork color standard: PCS; lightness = L*), drip loss (DL), cooking loss (CL), pH (PH), electric impedance (IMP), and collagen (COL) of the LM, and the genetic trends of these traits. Respective heritability estimates for IMF, TEND, DL, CL, PCS, L*, PH, IMP, and COL were 0.39, 0.45, 0.14, 0.09, 0.18, 0.16, 0.07, 0.22, and 0.23. Genetic correlations of IMF with ADG and BF were low and positive, but low and negative with LMA. Tenderness was correlated negatively with ADG (-0.44) and BF (-0.59), but positively correlated with LMA (0.32). The genetic correlation between LMA and DL was positive and high (0.64). The genetic correlations of TEND with IMF and COL were low (-0.09 and 0.26, respectively), but a moderate genetic correlation (0.43) between COL and IMF was estimated, suggesting related increases of IMF and connective tissue. Genetic correlations among meat quality traits suggested that when IMF increases, the water holding capacity improves. Genetic trends of meat quality traits showed increased IMF and lighter meat color.