Topical therapy is the most favored form of treatment for whitening against hyperpigmentation and sunburn because it lends itself to self-administration, patient compliance, and absence of systemic adverse effects. However, transdermal delivery of hydrophilic chemicals is difficult. The main purpose of this study is to develop a delivering system of hydrophilic drugs and proteins across the skin. Hydroquinone (HQ), a well-known tyrosinase inhibitor and antimelanogenesis compound, and enhanced green fluorescent protein (EGFP) were fused with eleven poly-arginine (11R). Both HQ-11R and EGFP-11R were efficiently delivered in B16 cells, a mouse melanoma cell line. HQ-11R was as effective as HQ alone at inhibiting melanin synthesis in B16 cells. EGFP-11R was efficiently delivered into cells of the epidermis with 4-(1-pyrenyl)-butyric acid (PB), a counteranion bearing an aromatic hydrophobic moiety, in vivo, but EGFP alone or EGFP-11R without PB was not. Finally, topical application of HQ-11R with PB significantly inhibited UV irradiationinduced pigmentation in guinea pigs compared with HQ alone. These results suggest that topical therapy using poly-arginine in combination with PB is useful for the delivery of hydrophilic drugs and proteins by the transdermal route . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Abstract Topical therapy is the most favored form of treatment for whitening against hyperpigmentation and sunburn because it lends itself to self-administration, patient compliance, and absence of systemic adverse effects. However, transdermal delivery of hydrophilic chemicals is difficult. The main purpose of this study is to develop a delivering system of hydrophilic drugs and proteins across the skin. Hydroquinone (HQ), a well-known tyrosinase inhibitor and antimelanogenesis compound, and enhanced green fluorescent protein (EGFP) were fused with eleven poly-arginine (11R).Both HQ-11R and EGFP-11R were efficiently delivered in B16 cells, a mouse melanoma cell line. HQ-11R was as effective as HQ alone at inhibiting melanin synthesis in B16 cells. EGFP-11R was efficiently delivered into cells of the epidermis with 4-(1-pyrenyl)-butyric acid (PB), a counteranion bearing an aromatic hydrophobic moiety, in vivo, but EGFP alone or EGFP-11R without PB was not. Finally, topical application of HQ-11R with PB significantly inhibited UV irradiation-induced pigmentation in guinea pigs compared with HQ alone. These results suggest that topical therapy using poly-arginine in combination with PB is useful for the delivery of hydrophilic drugs and proteins by the transdermal route. *Abstract1 2 3 4 5 6 7 8
Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood–brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach.
SUMMARYPurpose: Mutations in the SCN1A gene, which encodes the a1 subunit of voltage-gated sodium channels, cause generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). N1417H-Scn1a mutant rats are considered to be an animal model of human FS+ or GEFS+. To assess the pharmacologic validity of this model, we compared the efficacies of eight different antiepileptic drugs (AEDs) for the treatment of hyperthermia-induced seizures using N1417H-Scn1a mutant rats. Methods: AEDs used in this study included valproate, carbamazepine (CBZ), phenobarbital, gabapentin, acetazolamide, diazepam (DZP), topiramate, and potassium bromide (KBr). The effects of these AEDs were evaluated using the hot water model, which is a model of experimental FS. Five-week-old rats were pretreated with each AED and immersed in water at 45°C to induce hyperthermiainduced seizures. The seizure manifestations and videoelectroencephalographic recordings were evaluated. Furthermore, the effects of each AED on motor coordination and balance were assessed using the balance-beam test. Key Findings: KBr significantly reduced seizure durations, and its anticonvulsant effects were comparable to those of DZP. On the other hand, CBZ decreased the seizure threshold. In addition, DZP and not KBr showed significant impairment in motor coordination and balance. Significance: DZP and KBr showed potent inhibitory effects against hyperthermia-induced seizures in the Scn1a mutant rats, whereas CBZ exhibited adverse effects. These responses to hyperthermia-induced seizures were similar to those in patients with GEFS+ and SMEI. N1417H-Scn1a mutant rats may, therefore, be useful for testing the efficacy of new AEDs against FS in GEFS+ and SMEI patients.
Background:We examined the mechanism of urinary bladder motility return after bladder areflexia induced by interruption of the sacral parasympathetic outflow to the urinary bladder following damage to the sacral cord or pelvic nerves in the rat. Methods:The L6 and S1 nerve bundles were resected near the vertebrae, and bilateral pelvic nerve resections (PNR) performed. Spinal cord injury (SCI) was performed by means of a legion generator at the T12 vertebra. Thirty days after PNR and SCI, cystometrograms were recorded under anesthesia. Results: In all rats subjected to PNR or SCI, overflow incontinence continued, yet some rats subjected to SCI recovered within 2 weeks after the operation. Cystometrograms showed that repetitive bladder contractions appeared in rats subjected to SCI irrespective of hypogastric nerve (HGN) innervation, while bladder contractions did not appear in rats subjected to PNR. Electrical stimulation of the H G N induced higher bladder pressure elevation in rats who underwent PNR than in rats subjected to SCI. Conclusions:These results suggest that the generation of repetitive bladder contractions induced by bladder distention after bladder areflexia requires the presence of intact pelvic nerves that transmit sacral cord-originating excitatory information to the bladder. However, the H G N system and functioning pelvic nerve ganglia are not involved in this process. Also, the connection from the preganglionic H G N to the postganglionic parasympathetic nerves in the pelvic plexus did not form after PNR. Int
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.