New bioactive composites consisting of partially crystallized glass beads as inorganic fillers and poly(methyl methacrylate) (PMMA) as an organic matrix were developed. Two kinds of partially crystallized glass beads, designated Cry820 and Cry850, were newly prepared by the heating of MgO-CaO-SiO(2)-P(2)O(5) glass at 820 and 850 degrees C, respectively. The glass beads were mixed with PMMA to form two new composites designated Cry820C and Cry850C, respectively. The goal of this study was to produce a highly osteoconductive and mechanically strong composite cement with these new fillers. A previously reported composite cement designated AWC, which was composed of apatite- and wollastonite-containing glass ceramic (AW-GC) as a powder filler and the same PMMA polymer used in the new composites, was used as a reference material. The quantity of filler added to each composite was 70 wt %. The bending strength of Cry820C was significantly higher than that of Cry850C. Composites were packed into intramedullary canals of rat tibiae to evaluate their osteoconductivity, as determined by an affinity index. The affinity index, which equaled the length of bone in direct contact with the composite surface expressed as a percentage of the total length of the composite surface, was calculated for each composite. The rats were euthanized at 4, 8, and 25 weeks after implantation. At each time interval studied, Cry820C showed a significantly higher affinity index than AWC up to 25 weeks after implantation. Cry850C showed a significantly higher affinity index than AWC up to 8 weeks and a higher affinity index than AWC at 25 weeks, although the difference was not significant. The values for each composite increased significantly with time up to 25 weeks. Our study revealed that the higher osteoconductivity of the new composites was due to the larger quantity of the glassy phase of the crystallized glass beads at the composite surface and the lower solubility of the PMMA powder to methyl methacrylate monomer. In addition, the spherical shape of the crystallized glass beads gave the new composites strong enough mechanical properties to be useful under weight-bearing conditions. The new composites show promise as alternatives, with improved properties, to conventional PMMA bone cement.
The response of articular cartilage to ultrasound was maturation-dependent. Acoustic properties differed from mechanical stiffness properties, which were determined using indentation. Ultrasound may detect properties of the surface collagen of the articular cartilage.
We investigated quantitative changes over time in ultrasound signal intensity (an index of stiffness), signal duration (an index of surface irregularity), and interval between signals (an index of thickness) of plug cartilage in an animal model of autologous osteochondral grafting. A full-thickness osteochondral plug was surgically removed and replaced in male Japanese white rabbits (n = 22). Specimens obtained at day 0 and weeks 2, 4, 8, 12 and 24 postoperatively were assessed using an ultrasound system and by macroscopic and histological evaluation (modified Mankin's score). Histology revealed that the plug sank until 2 weeks postoperatively, and that newly formed cartilagelike tissue covered the plug, but at 24 weeks the tissue detached. The plug itself survived well throughout the period of observation. Although the signal intensity at the plug site was same as that in the sham operated contralateral knee at day 0, from 2 to 24 weeks postoperatively it was less than that in the sham knee. At 8 weeks, this difference was significant (P < 0.05). Modified Mankin's score revealed early degenerative changes at the site, but macroscopic examination did not. Signal intensity correlated significantly with score (both at day 0 and at the five postoperative time points [P < 0.05, r = -0.91] and as a whole [P < 0.05, r = -0.36]). Signal intensity also significantly correlated with the individual subscores for 'cartilage structure' (P < 0.05, r = -0.32) and 'cartilage cells' (P < 0.05, r = -0.30) from the modified Mankin's score, but not significantly with subscores for 'staining' and 'tidemark'. Signal duration correlated significantly with total score (as a whole [P < 0.05, r = 0.34]), but not significantly with the score for cartilage structure (P = 0.0557, r = 0.29). The interval between signals reflected well the actual thickness of the plug site. The significant relationships between ultrasound signal intensity and scores suggest that early degenerative changes in plug cartilage and cartilage-like tissue, especially in the superficial layer, are detectable by high-frequency ultrasound assessment.
ABSTRACT:We previously developed a novel ultrasound assessment system featuring wavelet transform to evaluate the material properties of articular cartilage. We aimed in this study to demonstrate the feasibility of quantitative evaluation of meniscus using ultrasound and to elucidate the relationships between its acoustic, mechanical, and biochemical properties. Meniscal disc specimens from mature pigs were assessed by ultrasound and compression testing, and their correlation was analyzed. A positive correlation was found between the ultrasound signal intensity and apparent Young's modulus (r ¼ 0.61). Subsequently, the porcine meniscal discs were treated with various enzymes and then characterized by ultrasound, by compression tests, by biochemical analyses, and by histology and immunohistochemistry. The signal intensity was decreased not by hyaluronidase but by collagenase treatment. Hyaluronidase-treated menisci showed a discrepancy between acoustic and mechanical properties, suggesting that the ultrasound reflection could not detect a reduction in proteoglycan content. Also, ultrasound signal intensity could only reflect superficial layers of the material. Several limitations exist at present, and further studies and improvements of the device are required. However, given the noninvasive nature and the requirement of only small equipment, this ultrasound assessment system will be an instrumental diagnostic tool for meniscal function in both research and clinical fields. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.