Although (-)-epigallocatechin gallate (EGCG) has been reported to induce apoptosis in a variety of tumor cells, detailed mechanisms remain to be explored. In the present study, we investigated the antitumor mechanism of EGCG by using human T-cell acute lymphoblastic leukemia Jurkat cells. We focused on the involvement of reactive oxygen species, as we found previously that EGCG caused apoptotic cell death in osteoclastic cells due mainly to promotion of the reduction of Fe(III) to Fe(II) to trigger Fenton reaction, which affords hydroxyl radical from hydrogen peroxide [H(2)O(2) + Fe(II) --> (*)OH + OH(-) + Fe(III)]. EGCG (12.5-50 micro M) decreased the viability of Jurkat cells and caused concomitant increase in cellular caspase-3 activity. Catalase and the Fe(II)-chelating reagent o-phenanthroline suppressed the EGCG effects, indicating involvements of both H(2)O(2) and Fe(II) in the mechanism. Unexpectedly, epicatechin gallate (ECG), which has Fe(III)-reducing potency comparable with EGCG, failed to decrease the viability of Jurkat cells, while epigallocatechin (EGC), which has low capacity to reduce Fe(III), showed cytotoxic effects similar to EGCG. These results suggest that, unlike in osteoclastic cells, a mechanism other than Fe(III) reduction plays a role in catechin-mediated Jurkat cell death. We found that EGCG causes an elevation of H(2)O(2) levels in Jurkat cell culture, in cell-free culture medium and sodium phosphate buffer. Catechins with a higher ability to produce H(2)O(2) were more cytotoxic to Jurkat cells. Hydrogen peroxide itself exerted Fe(II)-dependent cytotoxicity. Amongst tumor and normal cell lines tested, cells exhibiting lower H(2)O(2)-eliminating activity were more sensitive to EGCG. From these findings, we propose the mechanism that make catechins cytotoxic in certain tumor cells is due to their ability to produce H(2)O(2) and that the resulting increase in H(2)O(2) levels triggers Fe(II)-dependent formation of highly toxic hydroxyl radical, which in turn induces apoptotic cell death.
See also Kanse SM, Etscheid M. Factor VII activating protease (FSAP): caught in the cross-fire between polycations and polyanions. This issue, pp 556-8.
O. The effect of PM-17 on the growth of cancer cell lines and xenografts was assessed by a cell viability test and analysis of tumour expansion rate. Morphological analysis was carried out by Hoechst staining, flow-cytometric analysis of Annexin V staining, terminal deoxynucleotidyl transferase-mediated 'nick-end' labelling staining, and electron-microscopic analysis. Activation of autophagy was detected by western blotting and fluorescence-microscopic analysis of the localisation of GFP-LC3 in transfected tumour cells. PM-17 inhibited the growth of human pancreatic cancer (AsPC-1) xenografts in a nude mice model, and induced morphological alterations in tumour cells. Correspondingly, PM-17 repressed the proliferation of AsPC-1 cells and human gastric cancer cells (MKN45) depending on the dose in vitro. We observed apoptotic patterns as the formation of apoptotic small bodies and translocation of phosphatidylserine by Hoechst staining and flow-cytometric analysis following Annexin V staining, and in parallel, autophagic conformation by the formulation of autophagosomes and localisation of GFP-LC3 by electron-and fluorescence-microscopic analysis.
Four new analogues of concanamycin family, designated concanamycins D, E, F and G, were isolated from the mycelium of Streptomyces sp. A1509by solvent extraction, silica gel column chromatography and HPLC.Structures of these compoundswere identified by the combination of spectroscopic analyses. All of these compoundswere structurally related to concanamycinsA, B and C, which had been isolated previously, and inhibited the acidification of rat liver lysosomes at 10~1 2^-10~9 mconcentration. The structure-activity study showedthat the 18-memberedmacrolide ring and the 6-membered hemiketal ring portions of the molecules of concanamycin family are responsible for potent inhibitory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.