If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.Abstract Presents a methodology for applying Quality Function Deployment (QFD) for environmentally conscious design in the early stage of product development. This methodology has been developed by incorporating environmental aspects into QFD to handle the environmental and traditional product quality requirements simultaneously. The``QFD for environment (QFDE)'' proposed consists of four phases. Designers can find out which parts are the most important in enhancing environmental consciousness of their products by executing QFDE phase I and phase II. Further, a methodology is developed to evaluate the effects of design improvement on environmental quality requirements as phases III and IV. The results obtained from the case study of IC package show that QFDE could be applicable in the early stage of assembled product design, because the most important component from the viewpoint of the environment is clearly identified and multiple options for design improvement are effectively evaluated.The Emerald Research Register for this journal is available at
We report here a novel phenomenon: selective metal deposition on photoswitchable diarylethene (DAE) surfaces. Magnesium vapor was deposited by vacuum evaporation on the colored DAE but not on the uncolored surface. The selective deposition originates in the change of the glass transition temperature of the amorphous DAE film resulting from photoisomerization and therefore from changes of surface molecular motion. We clarified that Mg atoms on the uncolored surface actively migrated on the surface and were desorbed from the surface. The possibility of depositing other metals is also discussed. Light-controllable metal-integrated deposition was demonstrated as a new function of the photoswitchable molecular surfaces. This study reveals new features of the photoswitchable molecular surfaces, and their potential suggests bright prospects for future applications in organic electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.