This paper aims to compare the accuracy of financial ratios, tax arrears and annual report submission delays for the prediction of bank loan defaults. To achieve this, 12 variables from these three domains are used, while the study applies a longitudinal whole-population dataset from an Estonian commercial bank with 12,901 observations of defaulted and non-defaulted firms. The analysis is performed using statistical (logistic regression) and machine learning (neural networks) methods. Out of the three domains used, tax arrears show high prediction capabilities for bank loan defaults, while financial ratios and reporting delays are individually not useful for that purpose. The best default prediction accuracies were 83.5% with tax arrears only and 89.1% with all variables combined. The study contributes to the extant literature by enhancing the bank loan default prediction accuracy with the introduction of novel variables based on tax arrears, and also by indicating the pecking order of satisfying creditors’ claims in the firm failure process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.