Background. Oxaliplatin and irinotecan are generally used to treat advanced colorectal cancer (CRC) patients. Antibiotics improve the cytotoxicity of oxaliplatin but not irinotecan in a colon cancer cell line in vitro. This study retrospectively assessed whether antibiotics improve the treatment efficacy of oxaliplatin- but not irinotecan-based therapy in advanced CRC patients. Patients and Methods. The medical records of 220 advanced CRC patients who underwent oxaliplatin- or irinotecan-based therapy were retrospectively reviewed. The oxaliplatin and irinotecan groups were further divided into antibiotic-treated (group 1) and antibiotic-untreated (group 2) subgroups. Results. In oxaliplatin groups 1 and 2, the response rate (RR) was 58.2% and 30.2%, while the disease control rate (DCR) was 92.5% and 64.2%, respectively; the median progression-free survival (PFS) was 10.5 months (95% confidence interval (CI) = 7.5–12.2) and 7.0 months (95% CI = 17.0–26.0), respectively, and the median overall survival (OS) was 23.8 months (95% CI = 5.1–9.1) and 17.4 months (95% CI = 13.1–24.9), respectively. In irinotecan groups 1 and 2, the RR was 17.8% and 20.0%, while the DCR was 75.6% and 69.1%, respectively; the median PFS was 8.2 months (95% CI = 6.2–12.7) and 7.9 months (95% CI = 12.0–23.0), respectively, and the median OS was 16.8 months (95% CI = 5.9–10.6) and 13.1 months (95% CI = 10.4–23.7), respectively. Conclusion. To improve the treatment efficacy of oxaliplatin-based therapy in advanced CRC patients, adding antibiotics is a potential therapeutic option.
Functional properties caused by TP53 mutations are involved in cancer development and progression. Although most of the mutations lose normal p53 functions, some of them, gain-of-function (GOF) mutations, exhibiting novel oncogenic functions. No reports have analyzed the impact of TP53 mutations on the gene expression profile of the p53 signaling pathway across cancer types. This study is a cross-cancer type analysis of the effects of TP53 mutations on gene expression. A hierarchical cluster analysis of the expression profile of the p53 signaling pathway classified 21 cancer types into two clusters (A1 and A2). Changes in the expression of cell cycle-related genes and MKI67 by TP53 mutations were greater in cluster A1 than in cluster A2. There was no distinct difference in the effects between GOF and non-GOF mutations on the gene expression profile of the p53 signaling pathway.
Background: The TP53 signature that predicts the mutation status of TP53 has been shown to be a prognostic factor and predictor of neoadjuvant chemotherapy (NAC) response. Objectives: The current study sought to investigate the utility of the TP53 signature for predicting pathological complete response (pCR) and its prognostic significance among patients with residual disease (RD). Design: The study followed a retrospective cohort study design. Methods: Patients with T1-3/N0-1 from a cohort of those with HER2-negative breast cancer who received NAC were selected. Ability to predict pCR was evaluated using odds ratio, positive and negative predictive values, sensitivity, and specificity. Prognostic factors in the RD group were explored using the Cox proportional hazards model with distant recurrence-free survival (DRFS). Four independent cohorts were used for validation. Results: A total of 333 eligible patients were classified into the TP53 mutant signature (n = 154) and wild-type signature (n = 179). Among the molecular and pathological factors, the TP53 signature had the highest predictive power for pCR. In 4 independent cohorts (n = 151, 85, 104, and 67, respectively), pCR rate in TP53 mutant signature group was significantly higher than that in the wild-type group. Univariate and multivariate analyses on DRFS in the RD group identified the TP53 signature and nodal status as independent prognostic factors, with the former having a better hazard ratio than the latter. After comparing DRFS between 3 groups (pCR, RD/ TP53 wild-type signature, and RD/ TP53 mutant signature groups), the RD/ TP53 mutant signature group showed significantly worse prognosis compared with others. The RD/ TP53 wild-type signature group did not exhibit inferior DRFS compared with the pCR group. Conclusion: Our results showed that the TP53 mutant signature can predict pCR and that combining pathological response and TP53 mutant signature allows for the identification of subgroups with truly poor prognosis.
The cetuximab gene expression signature and DNA methylation status of colorectal cancer (CRC) are predictive of the therapeutic effects of anti‐epidermal growth factor receptor (EGFR) antibody therapy. As DNA methylation is a means of regulating gene expression, it may play an important role in the expression of cetuximab signature genes. This study aims to determine the effects of aberrant DNA methylation on the regulation of cetuximab signature gene expression. Comprehensive DNA methylation and gene expression data were retrieved from CRC patients in three tumor tissue (TT) cohorts and three normal colorectal mucosa/tumor tissue paired (NCM‐TT) cohorts. Of the 231 cetuximab signature genes, 57 exhibited an inverse correlation between the methylation of promoter CpG sites and gene expression level in multiple cohorts. About two‐thirds of the promoter CpG sites associated with the 57 genes exhibited this correlation. In all 57 gene promoter regions, the methylation levels in NCMs did not differ according to comparisons based on cetuximab signature or DNA methylation status classification of matched TTs. Thus, the altered expression of 57 genes was caused by aberrant DNA methylation during carcinogenesis. Analysis of the association between cetuximab signature or DNA methylation status and progression‐free survival (PFS) of anti‐EGFR antibody agents in the same cohort showed that DNA methylation status was most associated with PFS. In conclusion, we found that aberrant DNA methylation regulates specific gene expression in cetuximab signature during carcinogenesis, suggesting that it is one of the important determinants of sensitivity to anti‐EGFR antibody agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.