Extracellular vesicles (EVs) contain various cargo molecules, including RNAs and proteins. EVs, which include exosomes, are predicted to be suitable surrogates of their source cells for liquid biopsy to measure biomarkers. Several studies have performed qualitative comparisons of cargo molecule repertoires between source cells and their EVs. However, quantitative comparisons have not been reported so far. Furthermore, many studies analyzed microRNAs or proteins in EVs, but not mRNAs. In this study, we analyzed mRNAs in motor neurons and their EVs. Normal human-induced pluripotent stem cells were differentiated into motor neurons, and comprehensive analysis of mRNAs in the cells and their EVs was performed by RNA sequencing. Differential analysis between cellular and EV mRNAs was performed by edgeR after normalization of read count. The results suggest that signatures in the abundance of EV mRNAs were different from those of cellular mRNAs. Comparison of intracellular vesicle and EV mRNA abundance showed negatively and positively biased genes in the EVs. Gene Ontology analysis revealed that the genes showing negatively biased abundance in the EVs were enriched in many functions regarding neuronal development. In contrast, the positively biased genes were enriched in functions regarding cellular metabolism and protein synthesis. These results suggest that mRNAs in motor neurons are loaded into EVs to regulate certain mechanisms, which are yet to be elucidated. Exosomes are known as a representative subset of extracellular vesicles (EVs) that are secreted from any type of cell [1]. Exosomes are secreted from the cells via the formation of multivesicular bodies in endosomes and their fusion to the plasma membrane [2]. Microvesicles are also a subset of EVs, and they are secreted by a budding of plasma membrane [3]. The size of exosomes ranges from 30 to 200 nm, while that of microvesicles ranges from 100 to 1 lm [4]. However, it is difficult to completely separate and distinguish exosomes from other EV subsets because their diameters, marker molecules and cargos are rather overwrapped. Therefore, EVs are used as a general term [5]. EVs carry functional cargo molecules, such as RNAs and proteins, inside and outside of their membranes [6]. Generally, cargo molecules in EVs are considered to reflect at least a portion
Fused in sarcoma/translated in liposarcoma (FUS) is an RNA-binding protein, and its mutations are associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), through the DNA damage stress response, aberrant stress granule (SG) formation, etc. We previously reported that translocation of endogenous FUS into SGs was achieved by cotreatment with a DNA double-strand break inducer and an inhibitor of DNA-PK activity. In the present study, we investigated cytoplasmic SG formation using various fluorescent protein-tagged mutant FUS proteins in a human astrocytoma cell (U251) model. While the synergistic enhancement of the migration of fluorescent protein-tagged wild-type FUS to cytoplasmic SGs upon DNA damage induction was observed when DNA-PK activity was suppressed, the fluorescent protein-tagged FUSP525L mutant showed cytoplasmic localization. It migrated to cytoplasmic SGs upon DNA damage induction alone, and DNA-PK inhibition also showed a synergistic effect. Furthermore, analysis of 12 sites of DNA-PK–regulated phosphorylation in the N-terminal LC region of FUS revealed that hyperphosphorylation of FUS mitigated the mislocalization of FUS into cytoplasmic SGs. By using this cell model, we performed screening of a compound library to identify compounds that inhibit the migration of FUS to cytoplasmic SGs but do not affect the localization of the SG marker molecule G3BP1 to cytoplasmic SGs. Finally, we successfully identified 23 compounds that inhibit FUS-containing SG formation without changing normal SG formation.HighlightsCharacterization of DNA-PK-dependent FUS stress granule localization.A compound library was screened to identify compounds that inhibit the formation of FUS-containing stress granules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.