In rodents, where chemical signals play a particularly important role in determining intraspecies interactions including social dominance and intersexual relationships, various studies have shown that behavior is sensitive to conspecific odor cues. Mice use urinary scent marks for communication with individual conspecifics in many social contexts. Urinary scent involves genetic information about individuals such as species, sex, and individual identity as well as metabolic information such as social dominance, and reproductive and health status, which are mediated by chemical proteins in scent marks including the major histocompatibility complex and the major urinary proteins. The odor of the predator which can be considered to be a threatening signal for the prey also modulate mouse behavior in which scent marking is suppressed in response to the cat odor exposure in mice. These odorant chemicals are detected and recognized through two olfactory bulbs, the role of which in detection of chemosignals with biological relevant appears to be differential, but partly overlapped. Mice deposit scent marks toward conspecifics to maintain their social relationships, and inhibit scent marking in a context where natural predator, cat odor is contained. This suppression of scent marking is long-lasting (for at least 7 days) and context-dependent, while the odorant signaling to conspecifics tends to appear frequently (over 24h but less than 7 days intervals) depending on the familiarity of each signal-recipient. It has been discussed that scent marking is a communicative behavior associated with territoriality toward conspecifics, indicating that the social signaling within species are sensitive to predator odor cues in terms of vulnerability to predation risk.
The matrix-degrading activity of several proteases are involved in the accelerated breakdown of extracellular matrix associated with vascular remodeling during the development of atherosclerosis and vascular injury-induced neointimal formation. Previous studies have shown that the potent elastolytic cysteine proteases, cathepsins S and K, are overexpressed in atherosclerotic lesions in human and animal models. However, the role of these cathepsins in vascular remodeling remains unclear. In the present study, the expressions of cathepsin S and K and their inhibitor cystatin C were examined during arterial remodeling using a rat carotid artery balloon-injury model. The increase in both cathepsin S and K mRNA levels was observed from day 1 and day 3 through day 14 following the induction of balloon injury, respectively. Western blotting analysis revealed that both cathepsin S and K protein levels also increased in the carotid arteries during neointima formation, coinciding with an increase elastolytic activity assayed using Elastin-Congo red, whereas, no significant change in the expressions of cystatin C mRNA and protein was observed during follow-up periods after injury. Immunohistochemistry, Western blot, and in situ hybridization showed that the increase of cathepins S and K and the decrease of cystatin C occurred preferentially in the developing neointima. These findings suggest that cathepsin S and K may participate in the pathological arterial remodeling associated with restenosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.