Cyclodextrin glucanotransferase (CGTase) catalyzes the formation of cyclodextrins from amylose through an intramolecular transglycosylation reaction. On the basis of the three-dimensional structures of CGTases three histidine residues, which are conserved between CGTases and alpha-amylases, are located at the active center and are proposed to constitute the substrate binding sites. The three histidine residues (His-140, His-233, and His-327) of CGTase from alkalophilic Bacillus sp. 1011 were individually replaced by site-directed mutagenesis to probe their roles in catalysis. Asparagine-replaced CGTases (H140N-, H233N-, and H327N-CGTase) retained cyclization activity but had altered production ratios of alpha-, beta-, and gamma-cyclodextrin. Replacement of histidine by asparagine residues strongly affected the kcat for beta-cyclodextrin-forming, coupling, and hydrolyzing activities, whereas it barely affected the Km values. The activation energies for alpha-cyclodextrin hydrolysis were increased more than 12 kJ/mol by the replacement. Furthermore, the Ki values of acarbose, which is thought to be a transition-state analog of glycosidase catalysis, were 2-3 orders of magnitude larger in asparagine-replaced CGTases than that in wild-type CGTase. Therefore, the three histidine residues participate in the stabilization of the transition state, whereas they participate little in ground-state substrate binding. H327N-CGTase had decreased activity over an alkaline pH range, indicating that His-327 is important for catalysis over an alkaline pH range.
Three-dimensional structures of cyclodextrin glucanotransferases (CGTases) have revealed that four aromatic residues, which are highly conserved among CGTases but not found in alpha-amylases, are located in the active center. To analyze the roles of these aromatic residues, Phe-183, Tyr-195, Phe-259, and Phe-283 of Bacillus sp. 1011 CGTase were replaced by site-directed mutagenesis, and the effects of this procedure were examined. Y195L-CGTase, in which Tyr-195 was replaced by a leucine residue, underwent a drastic change in its cyclization characteristics: it produced considerably more gamma-cyclodextrin than the wild-type enzyme and virtually no alpha-cyclodextrin. Y195L-CGTase had increased Km values for cyclodextrins, whereas the values for a linear maltooligosaccharide donor were insignificantly changed. Taken together with the structural information of CGTase crystals soaked with substrates, we propose that Tyr-195 plays an important role in the spiral binding of substrate. Replacing either Phe-183 or Phe-259 with leucine induced increased Km values for acceptors. Furthermore, the double mutant F183L/F259L-CGTase had considerably decreased cyclization efficiency, but the intermolecular transglycosylation activity remained normal. These results indicated that Phe-183 and Phe-259 are cooperatively involved in acceptor binding, and that they play a critical role in cyclization when the nonreducing end of amylose binds to the active center of CGTase. Replacing Phe-283 with a leucine residue induced a decrease in kcat and in affinity for acarbose, suggesting that Phe-283 is involved in transition-state stabilization.
A new photometric assay of the disproportionation activity of cyclodextrin ~ucanotmnsfe~~ (CGTase) using 3-ketobuty~dene-~-2-~hloro-~ nitrophenyl-maltopentaoside as the donor, proved that the transglycosylation reaction of CGTase was operated by a Ping-Pong Bi Bi mechanism. The values of the kcJ~~tor proved that the same configurations of free hydroxyl groups with those of u-glucopyranose at C2, C3 and C4 positions were required for the acceptors used by CGTase. The structure around C6 on acceptors was not essential for acceptor function, but it was recognized by CGTase, since the values of k&K,,, for n-xylose were smaller than that for n-glucose. The value of k,,/K,,, for maltose was about ZO-times larger than that for u-glucose, indicating that at least two glucopyranosy~ rings are recognized by the acceptor binding sites.
Maltohexaose-producing amylase, called G6-amylase (EC 3.2.1.98), from alkalophilic Bacillus sp.707 predominantly produces maltohexaose (G6) from starch and related alpha-1,4-glucans. To elucidate the reaction mechanism of G6-amylase, the enzyme activities were evaluated and crystal structures were determined for the native enzyme and its complex with pseudo-maltononaose at 2.1 and 1.9 A resolutions, respectively. The optimal condition for starch-degrading reaction activity was found at 45 degrees C and pH 8.8, and the enzyme produced G6 in a yield of more than 30% of the total products from short-chain amylose (DP = 17). The crystal structures revealed that Asp236 is a nucleophilic catalyst and Glu266 is a proton donor/acceptor. Pseudo-maltononaose occupies subsites -6 to +3 and induces the conformational change of Glu266 and Asp333 to form a salt linkage with the N-glycosidic amino group and a hydrogen bond with secondary hydroxyl groups of the cyclitol residue bound to subsite -1, respectively. The indole moiety of Trp140 is stacked on the cyclitol and 4-amino-6-deoxyglucose residues located at subsites -6 and -5 within a 4 A distance. Such a face-to-face short contact may regulate the disposition of the glucosyl residue at subsite -6 and would govern the product specificity for G6 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.