Telomeres, guanine-rich tandem DNA repeats of the chromosomal end, provide chromosomal stability, and cellular replication causes their loss. In somatic cells, the activity of telomerase, a reverse transcriptase that can elongate telomeric repeats, is usually diminished after birth so that the telomere length is gradually shortened with cell divisions, and triggers cellular senescence. In embryonic stem cells, telomerase is activated and maintains telomere length and cellular immortality; however, the level of telomerase activity is low or absent in the majority of stem cells regardless of their proliferative capacity. Thus, even in stem cells, except for embryonal stem cells and cancer stem cells, telomere shortening occurs during replicative ageing, possibly at a slower rate than that in normal somatic cells. Recently, the importance of telomere maintenance in human stem cells has been highlighted by studies on dyskeratosis congenital, which is a genetic disorder in the human telomerase component. The regulation of telomere length and telomerase activity is a complex and dynamic process that is tightly linked to cell cycle regulation in human stem cells. Here we review the role of telomeres and telomerase in the function and capacity of the human stem cells.
Telomerase activity was analysed in 100 neuroblastoma cases. Although telomerase activity was not detected in normal adrenal tissues or benign ganglioneuromas, almost all neuroblastomas (94%) did express it, suggesting an important role for telomerase in neuroblastoma development. Neuroblastomas with high telomerase activity had other genetic changes (for example, N-myc amplification) and an unfavourable prognosis, whereas tumours with low telomerase activity were devoid of such genetic alterations and were associated with a favourable prognosis. Three neuroblastomas lacking telomerase activity regressed (stage IVS). Thus telomerase expression may be required as a critical step in the multigenetic process of tumorigenesis, and two different pathways may exist for the development of neuroblastoma.
Telomerase activity may be useful both as a diagnostic marker to detect the existence of immortal lung cancer cells in clinical materials and as a target for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.