Dendritic cells (DCs) are APCs that play an essential role by bridging innate and adaptive immunity. DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is one of the major C-type lectins expressed on DCs and exhibits high affinity for nonsialylated Lewis (Le) glycans. Recently, we reported the characterization of oligosaccharide ligands expressed on SW1116, a typical human colorectal carcinoma recognized by mannan-binding protein, which is a serum C-type lectin and has similar carbohydrate-recognition specificities as DC-SIGN. These tumor-specific oligosaccharide ligands were shown to comprise clusters of tandem repeats of Lea/Leb epitopes. In this study, we show that DC-SIGN is involved in the interaction of DCs with SW1116 cells through the recognition of aberrantly glycosylated forms of Lea/Leb glycans on carcinoembryonic Ag (CEA) and CEA-related cell adhesion molecule 1 (CEACAM1). DC-SIGN ligands containing Lea/Leb glycans are also highly expressed on primary cancer colon epithelia but not on normal colon epithelia, and DC-SIGN is suggested to be involved in the association between DCs and colorectal cancer cells in situ by DC-SIGN recognizing these cancer-related Le glycan ligands. Furthermore, when monocyte-derived DCs (MoDCs) were cocultured with SW1116 cells, LPS-induced immunosuppressive cytokines such as IL-6 and IL-10 were increased. The effects were significantly suppressed by blocking Abs against DC-SIGN. Strikingly, LPS-induced MoDC maturation was inhibited by supernatants of cocultures with SW1116 cells. Our findings imply that colorectal carcinomas affecting DC function and differentiation through interactions between DC-SIGN and colorectal tumor-associated Le glycans may induce generalized failure of a host to mount an effective antitumor response.
Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine that acts as a stimulator of pre-B lymphocyte cell growth and as a chemoattractant for T cells, monocytes, and hematopoietic stem cells. More recent studies also suggest that megakaryocytes migrate in response to SDF-1. Because genetic elimination of SDF-1 or its receptor lead to marrow aplasia, we investigated the effect of SDF-1 on megakaryocyte progenitors (colony-forming units-megakaryocyte [CFU-MK]). We report that SDF-1 augments the growth of CFU-MK from whole murine bone marrow cells when combined with thrombopoietin (TPO). The addition of SDF-1 to interleukin-3 (IL-3) or stem cell factor (SCF) had no effect. Specific antagonists for CXCR4 (the sole receptor for SDF-1), T22, and 1-9 (P2G) SDF-1 reduced megakaryocyte colony growth induced by TPO alone, suggesting that many culture systems contain endogenous levels of the chemokine that contributes to the TPO effect. To examine whether SDF-1 has direct effects on CFU-MK, we developed a new protocol to purify megakaryocyte progenitors. CFU-MK were highly enriched in CD41high c-kithigh cells generated from lineage-depleted TPO-primed marrow cells. Because the growth-promoting effects of SDF-1 were also observed when highly purified populations of CFU-MK were tested in serum-free cultures, these results suggest that SDF-1 directly promotes the proliferation of megakaryocytic progenitors in the presence of TPO, and in this way contributes to the favorable effects of the bone marrow microenvironment on megakaryocyte development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.