Peptides derived from the α-helical domains of human immunodeficiency virus (HIV) type 1 (HIV-1) gp41 inhibit HIV-1 fusion to the cell membrane. Enfuvirtide (T-20) is a peptide-based drug that targets the step of HIV fusion, and as such, it effectively suppresses the replication of HIV-1 strains that are either wild type or resistant to multiple reverse transcriptase and/or protease inhibitors. However, HIV-1 variants with T-20 resistance have emerged; therefore, the development of new and potent inhibitors is urgently needed. We have developed a novel HIV fusion inhibitor, SC34EK, which is a gp41-derived 34-amino-acid peptide with glutamate (E) and lysine (K) substitutions on its solvent-accessible site that stabilize its α-helicity. Importantly, SC34EK effectively inhibits the replication of T-20-resistant HIV-1 strains as well as wild-type HIV-1. In this report, we introduce SC29EK, a 29-amino-acid peptide that is a shorter variant of SC34EK. SC29EK blocked the replication of T-20-resistant HIV-1 strains and maintained antiviral activity even in the presence of high serum concentrations (up to 50%). Circular dichroism analysis revealed that the α-helicity of SC29EK was well maintained, while that of the parental peptide, C29, which showed moderate and reduced inhibition of wild-type and T-20-resistant HIV-1 strains, was lower. Our results show that the α-helicity in a peptide-based fusion inhibitor is a key factor for activity and enables the design of short peptide inhibitors with improved pharmacological properties.
Alpha-helical peptides, such as T-20 (enfuvirtide) and C34, derived from the gp41 carboxyl-terminal heptad repeat (C-HR) of HIV-1, inhibit membrane fusion of HIV-1 and the target cells. Although T-20 effectively suppresses the replication of multi-drug resistant HIV variants both in vitro and in vivo, prolonged therapy with T-20 induces emergence of T-20 resistant variants. In order to suppress the emergence of such resistant variants, we introduced charged and hydrophilic amino acids, glutamic acid (E) and lysine (K), at the solvent accessible site of C34. In particular, the modified peptide, SC34EK, demonstrates remarkably potent inhibition of membrane fusion by the resistant HIV-1 variants as well as wild-type viruses. The activity was specific to HIV-1 and little influenced by serum components. We found a strong correlation between the anti-HIV-1 activities of these peptides and the thermostabilities of the 6-helix bundles that are formed with these peptides. We also obtained the crystal structure of SC34EK in complex with a 36 amino acid sequence (N36) comprising the amino-terminal heptad repeat of HIV-1. The EK substitutions in the sequence of SC34EK were directed toward the solvent and generated an electrostatic potential, which may result in enhanced alpha-helicity of the peptide inhibitor. The 6-helix bundle complex of SC34EK with N36 appears to be structurally similar to that of C34 and N36. Our approach to enhancing alpha-helicity of the peptide inhibitor may enable future design of highly effective and specific HIV-1 inhibitors.
Human immunodeficiency virus (HIV) gp41 plays a key role in viral fusion; the N-and C-terminal heptad repeats (N-HR and C-HR) of gp41 form a stable 6-helical conformation for fusion. Therefore, HR-derived peptides, such as enfuvirtide (T-20), inhibit HIV-1 fusion by acting as decoys, and have been used for the treatment of HIV-1 infection. However, the efficacy of T-20 is attenuated by resistance mutations in gp41, including V38A and N43D. To suppress the resistant variants, we previously developed electrostatically constrained peptides, SC34 and SC34EK, and showed that both exhibited potent anti-HIV-1 activity against wild-type and T-20-resistant variants. In this study, to clarify the resistance mechanism to this next generation of fusion inhibitors, we selected variants with resistance to SC34 and SC34EK in vitro. The resistant variants had multiple mutations in gp41. All of these mutations individually caused less than 6-fold resistance to SC34 and SC34EK, indicating that there is a significant genetic barrier for high-level resistance. Cross-resistance to SC34 and SC34EK was reduced by a simple difference in the polarity of two intramolecular electrostatic pairs. Furthermore, the selected mutations enhanced the physicochemical interactions with N-HR variants and restored activities of the parental peptide, C34, even to resistant variants. These results demonstrate that our approach of designing gp41-binding inhibitors using electrostatic constraints and information derived from resistance studies produces inhibitors with enhanced activity, high genetic barrier, and distinct resistance profile from T-20 and other inhibitors. Hence, this is a promising approach for the design of future generation peptide fusion inhibitors.
The chemokine receptor CCR5 is an attractive target for HIV-1 drug development, as individuals whose cells lack surface CCR5 expression are highly resistant to HIV-1 infection. CCR5 ligands, such as CCL5/RANTES, effectively inhibit HIV-1 infection by competing for binding opportunities to the CCR5 and inducing its internalization. However, the inherent proinflammatory activity of the chemotactic response of CCR5 ligands has limited their clinical use. In this study, we found that a novel small molecule, functionally selective CCR5 agonist, 2,2-dichloro-1-(triphenylphosphonio)vinyl formamide perchlorate (YM-370749), down-modulates CCR5 from the cell surface without inducing a chemotactic response and inhibits HIV-1 replication. In molecular docking studies of YM-370749 and a three-dimensional model of CCR5 based on the rhodopsin crystal structure as well as binding and functional studies using various CCR5 mutants, the amino acid residues necessary for interaction with YM-370749 were marked. These results provide a structural basis for understanding the activation mechanism of CCR5 and for designing functionally selective agonists as a novel class of anti-HIV-1 agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.