Seasonal patterns in climatic conditions affect the life cycles and temporal patterns in the abundance of most temperate insect species. In tropical regions where there is no winter season, the situation may be different. For a better understanding of the evolution of seasonal life cycles, and the dynamics affecting temporal patterns in abundance of tropical insect populations and assemblages, it is important to study the life cycles of tropical insects and the presence or absence of seasonality in relation to climatic conditions. By reviewing studies on temporal patterns of abundance, this article examines the patterns of seasonality in adult tropical forest insects and discusses the variation in such patterns in various forest types. Seasonal and aseasonal patterns were found to be common in tropical dry and wet regions, respectively. In wet regions, which lack a distinctive dry season, there exists a wide variety of temporal patterns in addition to aseasonal patterns: distinctively seasonal and supra‐annual fluctuations in some insect species. Some of the problems of hidden ecological mechanisms underlying seasonal patterns in abundance are discussed, and the definition of seasonality in temporal patterns of insect abundance at a particular stage in the life cycle is considered. Methodological problems are also discussed.
In Southeast Asian tropical rainforests, two events, severe droughts associated with the El Niño-Southern Oscillation and general flowering, a type of community-wide mass flowering, occur at irregular, supra-annual intervals. The relationship between these two supra-annual events and patterns of insect population fluctuations has yet to be clearly elucidated. Leaf beetles (Chrysomelidae) are major herbivores and flower-visitors of canopy trees, affecting their growth and reproduction and, in turn, affected by tree phenology; but their population fluctuations in the Southeast Asian tropics have not been extensively investigated. We examined population fluctuation patterns of the 34 most dominant chrysomelid species in relation to the two supra-annual events by conducting monthly light-trapping over seven years in a lowland dipterocarp forest in Borneo. Our results showed large community variation in population fluctuation patterns and a supra-annual (between-year) variation in abundance for most of the dominant chrysomelids that was significantly larger than the annual (within-year) variation. Specifically, in response to a severe drought in 1998, chrysomelid species exhibited different population responses. These results show that population fluctuations of individual species, rather than the entire assemblage, must be analyzed to determine the effects of changes in environmental conditions on the structure of insect assemblages in the tropics, especially in regions where supra-annual environmental changes are relatively more important than seasonal changes.
There are very few studies that have investigated host-specificity among tropical herbivorous insects. Indeed, most of the trophic interactions of herbivorous insects in Southeast Asian tropical rainforests remain unknown, and whether polyphagous feeding is common in the herbivores of this ecosystem has not been determined. The present study employed DNA bar coding to reveal the trophic associations of adult leaf-chewing chrysomelid beetles in a Bornean rainforest. Plant material ingested by the adults was retrieved from the bodies of the insects, and a portion of the chloroplast rbcL sequence was then amplified from this material. The plants were identified at the family level using an existing reference database of chloroplast DNA. Our DNA-based diet analysis of eleven chrysomelid species successfully identified their host plant families and indicated that five beetle species fed on more than two families within the angiosperms, and four species fed on several families of gymnosperms and/or ferns together with multiple angiosperm families. These findings suggest that generalist chrysomelid beetles associated with ecologically and taxonomically distant plants constitute a part of the plant-insect network of the Bornean rainforest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.