The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca 2+ -binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H + . Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidenti®ed aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca 2+ on the external side of the inner mitochondrial membrane, where the Ca 2+ -binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca 2+ through a mechanism independent of Ca 2+ entry into mitochondria, and suggest a novel mechanism of Ca 2+ regulation of the aspartate/malate shuttle.
Citrullinaemia (CTLN) is an autosomal recessive disease caused by deficiency of argininosuccinate synthetase (ASS). Adult-onset type II citrullinaemia (CTLN2) is characterized by a liver-specific ASS deficiency with no abnormalities in hepatic ASS mRNA or the gene ASS (refs 1-17). CTLN2 patients (1/100,000 in Japan) suffer from a disturbance of consciousness and coma, and most die with cerebral edema within a few years of onset. CTLN2 differs from classical citrullinaemia (CTLN1, OMIM 215700) in that CTLN1 is neonatal or infantile in onset, with ASS enzyme defects (in all tissues) arising due to mutations in ASS on chromosome 9q34 (refs 18-21). We collected 118 CTLN2 families, and localized the CTLN2 locus to chromosome 7q21.3 by homozygosity mapping analysis of individuals from 18 consanguineous unions. Using positional cloning we identified a novel gene, SLC25A13, and found five different DNA sequence alterations that account for mutations in all consanguineous patients examined. SLC25A13 encodes a 3.4-kb transcript expressed most abundantly in liver. The protein encoded by SLC25A13, named citrin, is bipartite in structure, containing a mitochondrial carrier motif and four EF-hand domains, suggesting it is a calcium-dependent mitochondrial solute transporter with a role in urea cycle function.
Schizophrenia is believed to involve altered activation of dopamine receptors, and support for this hypothesis comes from the antipsychotic effect of antagonists of the dopamine D2 receptor (D2R). D2R is expressed most highly in the striatum, but most of the recent positron emission tomography (PET) studies have failed to show any change in D2R densities in the striatum of schizophrenics, raising the possibility that other receptors may also be involved. In particular, the dopamine D1 receptor (D1R), which is highly expressed in the prefrontal cortex, has been implicated in the control of working memory, and working memory dysfunction is a prominent feature of schizophrenia. We have therefore used PET to examine the distribution of D1R and D2R in brains of drug-naive or drug-free schizophrenic patients. Although no differences were observed in the striatum relative to control subjects, binding of radioligand to D1R was reduced in the prefrontal cortex of schizophrenics. This reduction was related to the severity of the negative symptoms (for instance, emotional withdrawal) and to poor performance in the Wisconsin Card Sorting Test. We propose that dysfunction of D1R signalling in the prefrontal cortex may contribute to the negative symptoms and cognitive deficits seen in schizophrenia.
Aralar is a mitochondrial calcium-regulated aspartate-glutamate carrier mainly distributed in brain and skeletal muscle, involved in the transport of aspartate from mitochondria to cytosol, and in the transfer of cytosolic reducing equivalents into mitochondria as a member of the malate-aspartate NADH shuttle. In the present study, we describe the characteristics of aralardeficient (Aralar ؊/؊ ) mice, generated by a gene-trap method, showing no aralar mRNA and protein, and no detectable malate-aspartate shuttle activity in skeletal muscle and brain mitochondria. Aralar ؊/؊ mice were growth-retarded, exhibited generalized tremoring, and had pronounced motor coordination defects along with an impaired myelination in the central nervous system. Analysis of lipid components showed a marked decrease in the myelin lipid galactosyl cerebroside. The content of the myelin lipid precursor, N-acetylaspartate, and that of aspartate are drastically decreased in the brain of Aralar ؊/؊ mice. The defect in N-acetylaspartate production was also observed in cell extracts from primary neuronal cultures derived from Aralar ؊/؊ mouse embryos. These results show that aralar plays an important role in myelin formation by providing aspartate for the synthesis of N-acetylaspartate in neuronal cells.
The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.