Rap2 is a member of the Ras family of GTPases and exhibits 60% identity to Rap1, but the function and regulation of Rap2 remain obscure. We found that, unlike the other Ras family proteins, the GTP-bound active form exceeded 50% of total Rap2 protein in adherent cells. Guanine nucleotide exchange factors (GEFs) for Rap1, C3G, Epac (or cyclic AMP [cAMP]-GEF), CalDAG-GEFI, PDZ-GEF1, and GFR efficiently increased the level of GTP-Rap2 both in 293T cells and in vitro. GTPase-activating proteins (GAPs) for Rap1, rap1GAPII and SPA-1, stimulated Rap2 GTPase, but with low efficiency. The half-life of GTP-Rap2 was significantly longer than that of GTP-Rap1 in 293T cells, indicating that low sensitivity to GAPs caused a high GTP/GDP ratio on Rap2. Rap2 bound to the Ras-binding domain of Raf and inhibited Ras-dependent activation of Elk1 transcription factor, as did Rap1. The level of GTP-Rap2 in rat 3Y1 fibroblasts was decreased by the expression of v-Src, and expression of a GTPase-deficient Rap2 mutant inhibited v-Src-dependent transformation of 3Y1 cells. Altogether, Rap2 is regulated by a similar set of GEFs and GAPs as Rap1 and functions as a slowly responding molecular switch in the Rap1 signaling cascade.
Among the 10 subtypes of the M group of human immunodeficiency virus type 1, subtype C is the most prevalent in India and may dominate worldwide in the near future; however, there has been no report on the infectious DNA clone of this subtype. We have isolated an infectious DNA clone of the 93IN101 strain of HIV-1 subtype C, which was isolated in India in 1993. MAGIC5 cells, which are derived from HeLa-CD4-LTR-beta-gal (MAGI) cells and express CCR5, were inoculated with the 93IN101 strain of HIV-1 subtype C. The genomic DNA of the infected cells was used as a template for amplification of the HIV-1 genome. The genome DNA obtained was subcloned into pBR322, and the resulting plasmid was designated as pIndie-C1. The insert of pIndie-C1 was 9680 bp in length and had an intact genomic organization with open reading frames of all structural, regulatory, and accessory proteins. Phylogenetic analysis confirmed that the nucleotide sequence of pIndie-C1 is closely related to those of HIV-1 subtype C isolated in India. Transfection of pIndie-C1 into 293T cells yielded as much virus as did pNL432, one of the most widely used HIV DNA clones. The recovered Indie-C1 virus infected MAGIC5 but not the parent MAGI cells, indicating that Indie-C1 is CCR5 tropic. Expressed Env protein was reacted efficiently with the sera of HIV-1-infected patients of India, but not of Japan. Expression of Nef and Vpr was also confirmed by immunoblotting.
The gene transfer system into skeletal muscle using the combination of BL and US exposure could be an effective means for angiogenic gene therapy in limb ischemia.
The kinetics of infectious virus (p.f.u.), total virus and virus-Ig complex formation following influenza A/PR8 (H1N1) viral infection was examined in the nasal secretions of naive mice and mice immunized with A/PR8, A/Yamagata (H1N1), A/Guizhou (H3N2) and B/Ibaraki influenza viruses. The total number of virus particles and the number within virus-Ig complexes, captured in advance using an anti-mouse Ig-coated plate, were determined on the basis of viral genome copy number using quantitative RT-PCR. The kinetics of infectious and total virus particle formation, the latter of which increased by 10 3-10 4-fold above infectious virus numbers, showed that virus elimination from the nasal area was earlier in A/PR8, A/Yamagata and A/Guizhou-X virus-immunized mice, in decreasing order, compared with naive mice. Early virus elimination correlated with the level of A/PR8 virus-reactive antibodies in immunized mice. Virus elimination coincided with the appearance of virus-Ig complexes shortly after infection. This result suggested that antibodies led to the formation of immune complexes in a dose-dependent manner together with a reduction in number of infectious virus particles. The fact that a large number of virus particles was observed in immune complexes for a wide range antibody levels made it difficult to detect slight differences in virus number within the immune complexes, depending on antibody level. These results suggested that the formation of virus-Ig complexes in virus-immunized mice shortly after infection is involved in early virus elimination, which is determined by the strength of protective immunity against challenge viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.