Apoptotic cells are rapidly engulfed by phagocytes to prevent the release of potentially noxious or immunogenic intracellular materials from the dying cells, thereby preserving the integrity and function of the surrounding tissue. Phagocytes engulf apoptotic but not healthy cells, indicating that the apoptotic cells present a signal to the phagocytes, and the phagocytes recognize the signal using a specific receptor. Here, we report a factor that links apoptotic cells to phagocytes. We found that milk fat globule-EGF-factor 8 (MFG-E8), a secreted glycoprotein, was produced by thioglycollate-elicited macrophages. MFG-E8 specifically bound to apoptotic cells by recognizing aminophospholipids such as phosphatidylserine. MFG-E8, when engaged by phospholipids, bound to cells via its RGD (arginine-glycine-aspartate) motif--it bound particularly strongly to cells expressing alpha(v)beta(3) integrin. The NIH3T3 cell transformants that expressed a high level of alpha(v)beta(3) integrin were found to engulf apoptotic cells when MFG-E8 was added. MFG-E8 carrying a point mutation in the RGD motif behaved as a dominant-negative form, and inhibited the phagocytosis of apoptotic cells by peritoneal macrophages in vitro and in vivo. These results indicate that MFG-E8 secreted from activated macrophages binds to apoptotic cells, and brings them to phagocytes for engulfment.
Fas ligand is a well-characterized apoptosis inducer. Here we demonstrate that Fas ligand induces the processing and secretion of interleukin-1beta (IL-1beta) in peritoneal exudate cells. This IL-1beta secretion is independent of IL-1beta converting enzyme (caspase 1), yet it is inhibited by caspase inhibitors, indicating that a caspase(s) in addition to IL-1beta converting enzyme can process IL-1beta. Inoculation of tumor cells expressing Fas ligand into wild-type mice induces a massive neutrophil infiltration that is, in contrast, suppressed in IL-1alpha/beta knockout mice. These results demonstrate a newly discovered role for Fas ligand in inflammation, and challenge the dogma that apoptosis does not induce inflammation.
A large amount of chromosomal DNA is degraded during programmed cell death and definitive erythropoiesis. DNase II is an enzyme that digests the chromosomal DNA of apoptotic cells and nuclei expelled from erythroid precursor cells after macrophages have engulfed them. Here we show that DNase II-/-IFN-IR-/- mice and mice with an induced deletion of the DNase II gene develop a chronic polyarthritis resembling human rheumatoid arthritis. A set of cytokine genes was strongly activated in the affected joints of these mice, and their serum contained high levels of anti-cyclic citrullinated peptide antibody, rheumatoid factor and matrix metalloproteinase-3. Early in the pathogenesis, expression of the gene encoding tumour necrosis factor (TNF)-alpha was upregulated in the bone marrow, and administration of anti-TNF-alpha antibody prevented the development of arthritis. These results indicate that if macrophages cannot degrade mammalian DNA from erythroid precursors and apoptotic cells, they produce TNF-alpha, which activates synovial cells to produce various cytokines, leading to the development of chronic polyarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.