Clear cell sarcoma of the kidney (CCSK) is one of the major pediatric renal neoplasms, but its associated genetic abnormalities are largely unknown. We identified internal tandem duplications in the BCOR gene (BCL6 corepressor) affecting the C terminus in 100% (20/20) of CCSK tumors but in none (0/193) of the other pediatric renal tumors. CCSK tumors expressed only an aberrant BCOR allele, indicating a close correlation between BCOR aberration and CCSK tumorigenesis.
Fanconi anemia (FA) is an autosomal recessive disorder of hematopoiesis characterized by hypersensitivity to DNA crosslinkers such as mitomycin C (MMC). There is growing evidence for a model of the FA pathway, wherein a nuclear multiprotein complex of five FA proteins (FANCA, C, E, F and G) regulates activation of FANCD2 into a monoubiquitinated form, which, collaborating with the BRCA1 machinery, affects cellular response to DNA damage. However, the role of the FA pathway in defective DNA damage response caused by various mutant forms of FA proteins has not been fully assessed. In the present study, 21 patient-derived FANCA mutants with a missense or a small in-frame deletion were expressed in FANCA-deficient fibroblasts and examined for complementation of MMC sensitivity and for reconstitution of the FA pathway: FANCA phosphorylation, interaction with FANCC, FANCF and FANCG and nuclear localization and FANCD2 monoubiquitination. The altered FANCA proteins complemented MMC sensitivity at different grades: five proteins (group I) behaved like wild-type FANCA, whereas the other proteins were either mildly (group II, n=4) or severely (group III, n=12) impaired. Group I proteins showed an apparently normal reconstitution of the FA pathway, thus they may be pathogenic by reducing endogenous expression or possibly benign polymorphisms. Reconstitution of the FA pathway by group II and III mutants closely correlated with cellular sensitivity to MMC. The different activation of the FA pathway may partly account for the phenotypic variation seen in FA patients.
Clear cell sarcoma of the kidney (CCSK) is the second most common renal malignancy in children. The prognosis is poorer in CCSK than in Wilms' tumor, and multimodal treatment including surgery, intensive chemotherapy, and radiation is required to improve the outcome for children with CCSK. Histological evaluation is required for the diagnosis. However, biopsies of tumors to obtain diagnostic specimens are not routinely performed because of the risk of spreading tumor cells during the procedure. Recently, internal tandem duplication (ITD) of BCOR has been recognized as a genetic hallmark of CCSK. We herein established a novel BCOR-ITD-specific polymerase chain reaction method with well-designed primers, and then performed a liquid biopsy for cell-free DNA (cfDNA) obtained from plasma of three children with nonmetastatic renal tumors (stage II) and from one control. BCOR-ITD was positively detected in the cfDNA of two cases, both of which were later diagnosed as CCSK based on histological feature of the resected tumor specimen, while it was not detected for a normal control and a patient diagnosed with Wilms' tumor. Our study is the first one of preoperative circulating tumor DNA assay in pediatric renal tumors. The liquid biopsy method enables less invasive, preoperative diagnosis of CCSK with no risk of tumor spillage, which can avoid iatrogenic upstaging.
Background Detection of the tumor-specific EWSR1/FUS-ETS fusion gene is essential to diagnose Ewing sarcoma. Reverse transcription–polymerase chain reaction (RT–PCR) and fluorescence in situ hybridization are commonly used to detect the fusion gene, and assays using next-generation sequencing have recently been reported. However, at least 28 fusion transcript variants have been reported, making rapid and accurate detection difficult. Methods We constructed two sets of multiplex PCR assays and evaluated their utility using cell lines and clinical samples. Results EWSR1/FUS-ETS was detected in five of six tumors by the first set, and in all six tumors by the second set. The fusion gene detected only by the latter was EWSR1-ERG, which completely lacked exon 7 of EWSR1. The fusion had a short N-terminal region of EWSR1 and showed pathologically atypical features. Conclusions We developed multiplex RT–PCR assays to detect EWSR1-ETS and FUS-ETS simultaneously. These assays will aid the rapid and accurate diagnosis of Ewing sarcoma. In addition, variants of EWSR1/FUS-ETS with a short N-terminal region that may have been previously missed can be easily detected.
Background Among pediatric renal tumors, rhabdoid tumor of the kidney (RTK) and clear cell sarcoma of the kidney (CCSK) are rare and associated with an unfavorable prognosis, while congenital mesoblastic nephroma (CMN) is associated with a good prognosis. Methylation of the Ras association domain‐containing protein 1 isoform A (RASSF1A) promoter has been reported to correlate with a poor prognosis in patients with Wilms tumors, while its methylation status is unclear in other types of pediatric renal tumors. Method DNA methylation of the RASSF1A promoter in several pediatric renal tumors was analyzed with pyrosequencing. In order to clarify the correlation between expression of RASSF1A and DNA methylation of its promoter, the RTK cell line was treated with 5‐Aza‐2′‐deoxycytidine (5‐Aza‐dC). RASSF1A was overexpressed in the RTK cell line to evaluate its functional effects. Results Quantitative methylation analysis demonstrated hypermethylation in the RASSF1A promoter region in RTK and CCSK, but not CMN. The 5‐Aza‐dC treatment induced demethylation of the RASSF1A promoter as well as increased RASSF1A mRNA expression. The transduction of RASSF1A has an effect on the suppression of viability and proliferation of RTK cells. Conclusion DNA methylation‐mediated deficiency of RASSF1A might be involved in the development and aggressiveness of some pediatric renal tumors and correlated with a poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.