SummaryProx1 plays pivotal roles during embryonic lymphatic development and maintenance of adult lymphatic systems by modulating the expression of various lymphatic endothelial cell (LEC) markers, such as vascular endothelial growth factor receptor 3 (VEGFR3). However, the molecular mechanisms by which Prox1 transactivates its target genes remain largely unknown. Here, we identified Ets-2 as a candidate molecule that regulates the functions of Prox1. Whereas Ets-2 has been implicated in angiogenesis, its roles during lymphangiogenesis have not yet been elucidated. We found that endogenous Ets-2 interacts with Prox1 in LECs. Using an in vivo model of chronic aseptic peritonitis, we found that Ets-2 enhanced inflammatory lymphangiogenesis, whereas a dominant-negative mutant of Ets-1 suppressed it. Ets-2 also enhanced endothelial migration towards VEGF-C through induction of expression of VEGFR3 in collaboration with Prox1. Furthermore, we found that both Prox1 and Ets-2 bind to the VEGFR3 promoter in intact chromatin. These findings suggest that Ets family members function as transcriptional cofactors that enhance Prox1-induced lymphangiogenesis.
Vascular endothelial growth factor receptor 2 (VEGFR2) transmits signals of crucial importance to vasculogenesis, including proliferation, migration, and differentiation of vascular progenitor cells. Embryonic stem cell–derived VEGFR2+ mesodermal cells differentiate into mural lineage in the presence of platelet derived growth factor (PDGF)–BB or serum but into endothelial lineage in response to VEGF-A. We found that inhibition of H-Ras function by a farnesyltransferase inhibitor or a knockdown technique results in selective suppression of VEGF-A–induced endothelial specification. Experiments with ex vivo whole-embryo culture as well as analysis of H-ras
−/− mice also supported this conclusion. Furthermore, expression of a constitutively active H-Ras[G12V] in VEGFR2+ progenitor cells resulted in endothelial differentiation through the extracellular signal-related kinase (Erk) pathway. Both VEGF-A and PDGF-BB activated Ras in VEGFR2+ progenitor cells 5 min after treatment. However, VEGF-A, but not PDGF-BB, activated Ras 6–9 h after treatment, preceding the induction of endothelial markers. VEGF-A thus activates temporally distinct Ras–Erk signaling to direct endothelial specification of VEGFR2+ vascular progenitor cells.
Two fluorescence modes were combined to analyze the binding properties of terminally substituted alkanes (CnX, X = COOH, OH, CHO, NH2) to human serum albumin (HSA). A competitive binding assay using an 8-anilino-1-naphthalenesulfonate (ANS) fluorescence probe provides information on all the hydrophobic binding sites in HSA. A binding assay using the intrinsic fluorescence of the tryptophan residue in HSA (Trp-HSA) provides information on the specific binding site close to the tryptophan residue. There are three fluorescence-active ANS binding sites in HSA, which can be classified into two types by their affinity for ANS. CnCOOH bound to all three ANS binding sites including the Trp-HSA site, however, it did not quench the fluorescence of Trp-HSA. CnCHO bound only to the Trp-HSA site with quenching of the fluorescence of Trp-HSA. By comparing the binding affinities of HSA for CnOH and CnCHO, it was concluded that the CnOH binding site is different from the CnCHO binding site. CnNH2 did not bind to any of the three ANS binding sites in HSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.