Amantadine is the noncompetitive antagonist of N-methyl-D-aspartate, receptor activated by the excitatory neurotransmitter glutamate. It is the only effective medication used to alleviate dyskinesia induced by L-3,4-dihydroxyphenylalanine (L-DOPA) in Parkinson's disease patients. Unfortunately, adverse effects as abnormal involuntary movements (AIMs) known as L-DOPA-induced dyskinesia limit its clinical utility. Combined effective symptomatic treatment modalities may lessen the liability to undesirable events. Likewise drugs known to interfere with nitrergic system reduce AIMs in animal models of Parkinson's disease. We aimed to analyze an interaction between amantadine, neuronal nitric oxide synthase inhibitor (7-nitroindazole, 7NI), and nitric oxide donor (sodium nitroprusside, SNP) in 6-hydroxydopamine-(6-OHDA)-lesioned rats (microinjection in the medial forebrain bundle) presenting L-DOPA-induced dyskinesia (20 mg/kg, gavage, during 21 days). We confirm that 7NI-30 mg/kg, SNP-2/4 mg/kg and amantadine-40 mg/kg, individually reduced AIMs. Our results revealed that co-administration of sub-effective dose of amantadine (10 mg/kg) plus sub-effective dose of 7NI (20 mg/kg) potentiates the effect of reducing AIMs scores when compared to the effect of the drugs individually. No superior benefit on L-DOPA-induced AIMs was observed with the combination of amantadine and SNP. The results revealed that combination of ineffective doses of amantadine and 7NI represents a new strategy to increase antidyskinetic effect in L-DOPA-induced AIMs. It may provide additional therapeutic benefits to Parkinson's disease patients from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone. To close, we discuss the paradox of both nitric oxide synthase inhibitor and/or donor produced AIMs reduction by targeting nitric oxide synthase.
The nitric oxide (NO) system has been proven to be a valuable modulator of L-DOPA-induced dyskinesia in Parkinsonian rodents. NO activates the enzyme soluble guanylyl cyclase and elicits the synthesis of the second-messenger cGMP. Although we have previously described the anti-dyskinetic potential of NO synthase inhibitors on L-DOPA-induced dyskinesia, the effect of soluble guanylyl cyclase inhibitors remains to be evaluated. The aim of this study was to analyze whether the clinically available non-selective inhibitor methylene blue, or the selective soluble guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), could mitigate L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rats. Here, we demonstrated that methylene blue was able to reduce L-DOPA-induced dyskinesia incidence when chronically co-administered with L-DOPA during 3 weeks. Methylene blue chronic (but not acute) administration (2 weeks) was effective in attenuating L-DOPA-induced dyskinesia in rats rendered dyskinetic by a previous course of L-DOPA chronic treatment. Furthermore, discontinuous methylene blue treatment (e.g., co-administration of methylene blue and L-DOPA for 2 consecutive days followed by vehicle and L-DOPA co-administration for 5 days) was effective in attenuating dyskinesia. Finally, we demonstrated that microinjection of methylene blue or ODQ into the lateral ventricle effectively attenuated L-DOPA-induced dyskinesia. Taken together, these results demonstrate an important role of NO-soluble guanylyl cyclase-cGMP signaling on L-DOPA-induced dyskinesia. The clinical implications of this discovery are expected to advance the treatment options for patients with Parkinson's disease.
Non-motor symptoms are increasingly identified to present clinical and diagnostic importance for Parkinson's disease (PD). The multifactorial origin of pain in PD makes this symptom of great complexity. The dopamine precursor, L-DOPA (L-3,4-dihydroxyphenylalanine), the classic therapy for PD, seems to be effective in pain threshold; however, there are no studies correlating L-DOPA-induced dyskinesia (LID) and nociception development in experimental Parkinsonism. Here, we first investigated nociceptive responses in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease to a hind paw-induced persistent inflammation. Further, the effect of L-DOPA on nociception behavior at different times of treatment was investigated. Pain threshold was determined using von Frey and Hot Plate/Tail Flick tests. Dyskinesia was measured by abnormal involuntary movements (AIMs) induced by L-DOPA administration. This data is consistent to show that 6-OHDA-lesioned rats had reduced nociceptive thresholds compared to non-lesioned rats. Additionally, when these rats were exposed to a persistent inflammatory challenge, we observed increased hypernociceptive responses, namely hyperalgesia. L-DOPA treatment alleviated pain responses on days 1 and 7 of treatment, but not on day 15. During that period, we observed an inverse relationship between LID and nociception threshold in these rats, with a high LID rate corresponding to a reduced nociception threshold. Interestingly, pain responses resulting from CFA-induced inflammation were significantly enhanced during established dyskinesia. These data suggest a pro-algesic effect of L-DOPA-induced dyskinesia, which is confirmed by the correlation founded here between AIMs and nociceptive indexes. In conclusion, our results are consistent with the notion that central dopaminergic mechanism is directly involved in nociceptive responses in Parkinsonism condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.