Ecological communities are jointly structured by dispersal, density-independent responses to environmental conditions, and density-dependent biotic interactions. Metacommunity ecology provides a framework for understanding how these processes combine to determine community seagrass meadows along the British Columbia coast. We tested the hypothesis that eelgrass Zostera marina L. epifaunal invertebrate assemblages are influenced by local environmental conditions but that high dispersal rates at larger spatial scales dampen the effects of environmental differences. We used hierarchical joint species distribution modelling to understand the contribution of environmental conditions, spatial distance between meadows, and species co-occurrences to epifaunal invertebrate abundance and distribution across the region. We found that patterns of taxonomic compositional similarity among meadows were inconsistent with dispersal limitation, and meadows in the same region were often no more similar to each other than meadows over 1000 km away. Abiotic environmental conditions (temperature, dissolved oxygen) explained a small fraction of variation in taxonomic abundance patterns across the region. We found novel co-occurrence patterns among taxa that could not be explained by shared responses to environmental gradients, suggesting the possibility that interspecific interactions influence seagrass invertebrate abundance and distribution. Our results suggest that biodiversity and ecosystem functions provided by seagrass meadows reflect ecological processes occurring both within meadows and across seascapes and that management of eelgrass habitat for biodiversity may be most effective when both local and regional processes are considered.
Ecological communities are jointly structured by dispersal, density-independent responses to environmental conditions and density-dependent biotic interactions. Metacommunity ecology provides a framework for understanding how these processes combine to determine community composition among local sites that are regionally connected through dispersal. In 17 temperate seagrass meadows along the British Columbia coast, we tested the hypothesis that eelgrass (Zostera marina L.) epifaunal invertebrate assemblages are influenced by local environmental conditions, but that high dispersal rates at larger spatial scales dampen effects of environmental differences. We used hierarchical joint species distribution modelling to understand the contribution of environmental conditions, spatial distance between meadows, and species co-occurrences to epifaunal invertebrate abundance and distribution across the region. We found that patterns of taxonomic compositional similarity among meadows were inconsistent with dispersal limitation and meadows in the same region were often no more similar to each other than meadows over 1000 km away. Abiotic environmental conditions (temperature, dissolved oxygen) explained a small fraction of variation in taxonomic abundances patterns across the region. We found novel co-occurrence patterns among taxa that could not be explained by shared responses to environmental gradients, suggesting the possibility that interspecific interactions influence seagrass invertebrate abundance and distribution. Our results add to mounting evidence that suggests that the biodiversity and ecosystem functions provided by seagrass meadows reflect ecological processes occurring both within meadows and across seascapes, and suggest that management of eelgrass habitat for biodiversity may be most effective when both local and regional processes are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.