During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these ‘combined enhancers’ foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
In embryos, lineage-specific profiles of chromatin accessibility control gene expression by modulating transcription, and thus impact multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors’ competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. Combinations of cis-regulatory elements with distinct chromatin accessibility profiles are required to activate of Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that this higher order combinatorial logic increases the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity, thus fostering spatially and temporally accurate fate choices.
Measurements for protein half-lives in yeast Saccharomyces cerevisiae reported large discrepancies, with median values between minutes to several hours. We present a unifying analysis that provides a consistent half-life estimate, based on our re-analysis of three published and one new dataset of cells grown under similar conditions. We found that degradation of many proteins can be approximated by exponential decay. Protein disappearance was primarily driven by dilution due to cell division, with cell doubling times ranging from ~2 to 3.5 hours across the four experiments. After adjusting for doubling time, protein half-lives increased to median values between ~7.5 to ~40 hours. Half-lives correlated with cell doubling time even after adjustment, implying that slow growth also slows protein degradation. All estimates were validated by multiple means and were robust to different analysis methods. Overall, protein stability correlated with abundance and showed weak enrichment for degradation signals such as degrons and disordered regions. Long-lived proteins often functioned in oxidation-reduction and amino acid synthesis. Short-lived proteins often functioned in ribosome biogenesis. Despite some overall differences in behavior, all methods were able to resolve subtle difference in half-lives of ribosomal proteins, e.g. the short lifespan of RPL10. Finally, our results help the design of future experiments: time series measurements need to cover at least two to three cell doubling times for accurate estimates, exponential decay provides a reasonable proxy for protein stability, and it can be sufficiently estimated with four measurement points. Words: 241All rights reserved. No reuse allowed without permission.was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Measurements for protein half-lives in yeast Saccharomyces cerevisiae reported large discrepancies, with median values between minutes to several hours. We present a unifying analysis that provides a consistent half-life estimate, based on our re-analysis of three published and one new dataset of cells grown under similar conditions. We found that degradation of many proteins can be approximated by exponential decay. Protein disappearance was primarily driven by dilution due to cell division, with cell doubling times ranging from ~2 to 3.5 hours across the four experiments. After adjusting for doubling time, protein half-lives increased to median values between ~7.5 to ~40 hours. Half-lives correlated with cell doubling time even after adjustment, implying that slow growth also slows protein degradation. All estimates were validated by multiple means and were robust to different analysis methods. Overall, protein stability correlated with abundance and showed weak enrichment for degradation signals such as degrons and disordered regions. Long-lived proteins often functioned in oxidation-reduction and amino acid synthesis. Short-lived proteins often functioned in ribosome biogenesis. Despite some overall differences in behavior, all methods were able to resolve subtle difference in half-lives of ribosomal proteins, e.g. the short lifespan of RPL10. Finally, our results help the design of future experiments: time series measurements need to cover at least two to three cell doubling times for accurate estimates, exponential decay provides a reasonable proxy for protein stability, and it can be sufficiently estimated with four measurement points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.