Detection of SWCNTs in complex matrices presents a unique challenge as common techniques lack spatial resolution and specificity. Near infrared fluorescence (NIRF) has emerged as a valuable tool for detecting and quantifying SWCNTs in environmental samples by exploiting their innate fluorescent properties. The objective of this study was to optimize NIRF-based imaging and quantitation methods for tracking and quantifying SWCNTs in an aquatic vertebrate model in conjunction with assessing toxicological end points. Fathead minnows (Pimephales promelas) were exposed by single gavage to SWCNTs and their distribution was tracked using a custom NIRF imaging system for 7 days. No overt toxicity was observed in any of the SWCNT treated fish; however, histopathology observations from gastrointestinal (GI) tissue revealed edema within the submucosa and altered mucous cell morphology. NIRF images showed strong SWCNT-derived fluorescence signals in whole fish and excised intestinal tissues. Fluorescence was not detected in other tissues examined, indicating that no appreciable intestinal absorption occurred. SWCNTs were quantified in intestinal tissues using a NIRF spectroscopic method revealing values that were consistent with the pattern of fluorescence observed with NIRF imaging. Results of this work demonstrate the utility of NIRF imaging as a valuable tool for examining uptake and distribution of SWCNTs in aquatic vertebrates.
Background: Airborne exposure to nanomaterials from unintended occupational or environmental exposures or as a consequence of product use may lead to adverse health effects. Numerous studies have focused on single-walled carbon nanotubes (SWCNTs) and their ability to cause pulmonary injury related to fibrosis, and cancer; however few studies have addressed their impact on infectious agents, particularly viruses that are known for causing severe disease. Here we have demonstrated the ability of pristine SWCNTs of diverse electronic structure to increase the susceptibility of small airway epithelial cells (SAEC) to pandemic influenza A H1N1 infection and discerned potential mechanisms of action driving this response.
Previous studies indicate that exposure of fish to pristine single-walled carbon nanotubes (SWCNTs) by oral gavage, causes no overt toxicity, and no appreciable absorption has been observed. However, in the environment, SWCNTs are likely to be present in dietary sources, which may result in differential impacts on uptake and biological effects. Additionally, the potential of these materials to sorb nutrients (proteins, carbohydrates, and lipids) while present in the gastrointestinal (GI) tract may lead to nutrient depletion conditions that impact processes such as growth and reproduction. To test this phenomenon, fathead minnows were fed a commercial diet either with or without SWCNTs for 96 h. Tracking and quantification of SWCNTs using near-infrared fluorescence (NIRF) imaging during feeding studies showed the presence of food does not facilitate transport of SWCNTs across the intestinal epithelia. Targeting genes shown to be responsive to nutrient depletion (peptide transporters, peptide hormones, and lipases) indicated that pept2, a peptide transporter, and cck, a peptide hormone, showed differential mRNA expression by 96 h, a response that may be indicative of nutrient limitation. The results of the current study increase our understanding of the movement of SWCNTs through the GI tract, while the changes in nutrient processing genes highlight a novel mechanism of sublethal toxicity in aquatic organisms.
Recent evidence suggests that, because of their sorptive nature, if single-walled carbon nanotubes (SWCNTs) make their way into aquatic environments, they may reduce the toxicity of other waterborne contaminants. However, few studies have examined whether contaminants remain adsorbed following ingestion by aquatic organisms. The objective of this study was to examine the bioavailability and bioactivity of ethinyl estradiol (EE2) sorbed onto SWCNTs in a fish gastrointestinal (GI) tract. Sorption experiments indicated that SWCNTs effectively adsorbed EE2, but the chemical was still able to bind and activate soluble estrogen receptors (ERs) in vitro. However, centrifugation to remove SWCNTs and adsorbed EE2 significantly reduced ER activity compared to that of EE2 alone. Additionally, the presence of SWCNTs did not reduce the extent of EE2-driven induction of vitellogenin 1 in vivo compared to the levels in organisms exposed to EE2 alone. These results suggest that while SWCNTs adsorb EE2 from aqueous solutions, under biological conditions EE2 can desorb and retain bioactivity. Additional results indicate that interactions with gastrointestinal proteins may decrease the level of adsorption of estrogen to SWCNTs by 5%. This study presents valuable data for elucidating how SWCNTs interact with chemicals that are already present in our aquatic environments, which is essential for determining their potential health risk.
The continued growth of the nanotechnology industry and the incorporation of nanomaterials into consumer applications will inevitably lead to their release into environmental systems. Single-walled carbon nanotubes (SWCNTs) in particular have exhibited many attractive optical, mechanical, and electrical properties that lend themselves to new and exciting applications. Assessing their environmental impact upon release into the environment is contingent upon quantifying and characterizing SWCNTs in environmental matrixes. In this study, SWCNTs were isolated from estuarine sediments using density gradient ultracentrifugation (DGU), followed by online flow-through analysis of the density fractions via near-infrared spectroscopy. This approach yielded significant improvements in the quantitative detection limit, from 62 to 1.5 μg g–1. In addition, fractions of the density gradient were also obtained for further analysis by bulk inductively coupled plasma mass spectrometry (ICP–MS) and single-particle ICP–MS. Using fluorescent, semiconductive SWCNTs, the primary fluorescent nanotube fraction was found to be separated from the sediment matrix during DGU; however, the residual metal catalyst particles that had been assumed to be physically bound to the SWCNTs were found to form a separate band in the density gradient apart from the fluorescent SWCNTs. This result was repeated for a number of SWCNT types regardless of the metal catalyst and synthesis method, with a 0.1 g cm–3 density difference between most fractions. The apparent disconnect between the fluorescent fraction of SWCNTs and their metal-containing constituents potentially complicates CNT risk assessment as analysis techniques focusing solely on either CNT fluorescence or metal fingerprints may misrepresent exposure concentrations and their toxicological implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.