Objectives Methotrexate (MTX) is an anchor drug for the treatment of rheumatoid arthritis (RA). However, the precise mechanisms by which MTX stalls RA progression and alleviates the ensuing disease effects remain unknown. The aim of the present study was to identify novel therapeutic target molecules, the expression patterns of which are affected by MTX in patients with RA. Methods CD4+ T cells from 28 treatment-naïve patients with RA before and 3 months after the initiation of MTX treatment were subjected to DNA microarray analyses. The expression levels of semaphorin 3G, a differentially expressed gene, and its receptor, neuropilin-2, were evaluated in the RA synovium and collagen-induced arthritis synovium. Collagen-induced arthritis and collagen antibody-induced arthritis were induced in semaphorin3G-deficient mice and control mice, and the clinical score, histological score, and serum cytokines were assessed. The migration and proliferation of semaphorin 3G-stimulated bone marrow-derived macrophages were analyzed in vitro. The effect of local semaphorin 3G administration on the clinical score and number of infiltrating macrophages during collagen antibody-induced arthritis was evaluated. Results Semaphorin 3G expression in CD4+ T cells was downregulated by MTX treatment in RA patients. It was determined that semaphorin 3G is expressed in RA but not in the osteoarthritis synovium; its receptor neuropilin-2 is primarily expressed on activated macrophages. Semaphorin3G deficiency ameliorated collagen-induced arthritis and collagen antibody-induced arthritis. Semaphorin 3G stimulation enhanced the migration and proliferation of bone marrow-derived macrophages. Local administration of semaphorin 3G deteriorated collagen antibody-induced arthritis and increased the number of infiltrating macrophages. Conclusions Upregulation of semaphorin 3G in the RA synovium is a novel mechanism that exacerbates joint inflammation, leading to further deterioration, through macrophage accumulation.
Epithelial cells control a variety of immune cells by secreting cytokines to maintain tissue homeostasis on mucosal surfaces. Regulatory T (Treg) cells are essential for immune homeostasis and for preventing tissue inflammation; however, the precise molecular mechanisms by which epithelial cell-derived cytokines function on Treg cells in the epithelial tissues are not well understood. Here, we show that peripheral Treg cells preferentially respond to thymic stromal lymphoprotein (TSLP). Although TSLP does not affect thymic Treg differentiation, TSLP receptor-deficient induced Treg cells derived from naïve CD4+ T cells are less activated in an adoptive transfer model of colitis. Mechanistically, TSLP activates induced Treg cells partially through mTORC1 activation and fatty acid uptake. Thus, TSLP modulates the activation status of induced Treg through the enhanced uptake of fatty acids to maintain homeostasis in the large intestine.
We analyzed peripheral blood mononuclear cells (PBMCs) of each 20 individuals with a high anti-SARS-CoV-2 antibody titer and a low antibody titer out of 1,774 healthcare workers who received BNT162b2 mRNA vaccine. A higher antibody titer was associated with the frequencies of naive and transitional B cells before vaccination. In addition, fold changes in the frequency of activated CD8+ T cells upon vaccination were correlated with the antibody titers.
Objectives Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive polyarthritis. CD4+ T cells are pivotal to its pathogenesis, and our previous study revealed the expression of fibroblast growth factor receptor 1 (FGFR1) is modulated by methotrexate treatment in CD4+ T cells of RA patients; however, the roles of FGFR1 in CD4+ T cells in the pathogenesis of RA is unclear. Therefore, in this study, we aimed to characterize FGFR1-positive CD4+ T cells in RA patients. Methods The abundance of FGFR1-positive CD4+ T cells in peripheral blood and synovium was determined. Single-cell RNA sequencing (scRNA-seq) was performed on synovial CD4+ T cells to characterize FGFR1-positive cells. In addition, T cell activation status and cytokine production were determined using flow cytometry. Results The percentage of FGFR1-positive CD4+ T cells in the peripheral blood was higher in RA patients than in healthy controls (P= 0.0035). They were also present in the synovium of active RA patients. The results of scRNA-seq revealed that peripheral T helper (Tph) cells preferentially expressed FGFR1. Additionally, these FGFR1-positive Tph cells displayed a terminal effector cell phenotype. Consistent with this finding, FGFR1-positive CD4+ T cells in peripheral blood expressed interleukin-21 and interferon-γ. Conclusion Our study provides evidence that FGFR1 marks terminal effector Tph cells in patients with RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.