The rhythmic expression of clock genes in the uterus is attenuated during decidualization. This study focused on Ptgs2, which is essential for decidualization, as a putative clock-controlled gene, and aimed to reveal the functions of clock genes in relation to Ptgs2 during decidualization. We compared the transcript levels of clock genes in the rat uterus on days 4.5 (D4.5) and 6.5 of pregnancy. The transcript levels of clock genes (Per2, Bmal1, Rorα, and Rev-erbα) had decreased at implantation sites on day 6.5 (D6.5e) compared with those on D4.5, whereas Ptgs2 transcripts had increased on D6.5e. Similar observations of Rev-erbα and Ptgs2 were also obtained in the endometrium on D6.5e by immunohistochemistry. In the decidual cells induced by medroxyprogesterone and 2-O-dibutyryl-cAMP, the rhythmic expression levels of clock genes were attenuated, whereas Ptgs2 transcription was induced. These results indicate that decidualization causes the attenuation of clock genes and the induction of Ptgs2. Furthermore, in the experiment of Bmal1 siRNA, the rhythmic expression of clock genes and Ptgs2 was attenuated by the siRNA. Transcript levels of Ptgs2 and prostaglandin (PG)E₂ production were increased by treatment with the Rev-erbα antagonist, suggesting the contribution of the nuclear receptor Rev-erbα to Ptgs2 expression. Moreover, Rev-erbα knockdown enhanced the induction of Ptgs2 transcription and PGE₂ production by forskolin. Chromatin immunoprecipitation-PCR analysis revealed that Rev-erbα could directly bind to a proximal RORE site of Ptgs2. Collectively, this study demonstrates that the attenuation of the circadian clock, especially its core component Rev-erbα, contributes to the induction of Ptgs2 during decidualization.
The peripheral circadian oscillator plays an essential role in synchronizing local physiology to operate in a circadian manner via regulation of the expression of clock-controlled genes. The present study aimed to evaluate the circadian rhythms of clock genes and clock-controlled genes expressed in the rat uterus endometrial stromal cells (UESCs) during the stage of implantation by a DNA microarray. Of 12,252 genes showing significantly expression, 7,235 genes displayed significant alterations. As revealed by the biological pathway analysis using the database for annotation, visualization, and integrated discovery online annotation software, genes were involved in cell cycle, glutathione metabolism, MAPK signaling pathway, fatty acid metabolism, ubiquitin mediated proteolysis, focal adhesion, and PPAR signaling pathway. The clustering of clock genes were mainly divided into four groups: the first group was Rorα, Timeless, Npas2, Bmal1, Id2, and Cry2; the second group Per1, Per2, Per3, Dec1, Tef, and Dbp; the third group Bmal2, Cry1, E4bp4, Rorβ, and Clock; the fourth group Rev-erbα. Eleven implantation-related genes and 24 placenta formation-related genes displayed significant alterations, suggesting that these genes involved in implantation and placenta formation are controlled under circadian clock. Some candidates as clock-controlled genes were evaluated by using RNA interference to Bmal1 mRNA. Down-regulation of Igf1 gene expression was observed by Bmal1 silencing, whereas the expression of Inhβa was significantly increased. During active oscillation of circadian clock, the apoptosis-related genes Fas and Caspase3 remained no significant changes, but they were significantly increased by knockdown of Bmal1 mRNA. These results indicate that clock-controlled genes are up- or down-regulated in rat UESCs during the stage of decidualization. DNA microarray analysis coupled with RNA interference will be helpful to understand the physiological roles of some oscillating genes in blastocyst implantation and placenta formation.
Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expression of Gdf10 and Gdf15 is significantly increased in the uterus during decidualization, but the mechanism underlying the regulation of Gdf gene expression in the uterus is poorly understood. Here, we focused on the function of the cellular oscillators in the expression of Gdf family by using uterine endometrial stromal cells (UESCs) isolated from pregnant Per2‐dLuc transgenic rats. A significant decline of Per2‐dLuc bioluminescence activity was induced in in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and Gdf15 of the Gdf was upregulated. In UESCs transfected with Bmal1‐specific siRNA, in which Rev‐erbα expression was downregulated, Gdf10 and Gdf15 were upregulated. However, Gdf5, Gdf7, and Gdf11 were not significantly affected by Bmal1 silencing. The expression of Gdf10 and Gdf15 was enhanced after treatment with a REV‐ERB α antagonist in the presence or absence of progesterone. Chromatin immunoprecipitation‐PCR analysis revealed the inhibitory effect of REV‐ERB α on the expression of Gdf10 and Gdf15 in UESCs by recognizing their gene promoters. Collectively, our findings indicate that the attenuation of REV‐ERB α leads to an upregulation of Gdf10 and Gdf15 in decidual cells, in which cellular oscillators are impaired. Our results provide novel evidence regarding the functions of cellular oscillators regulating the expression of downstream genes during the differentiation of UESCs.
Uterus circadian rhythms have been implicated in the gestation processes of mammals through entraining of the clock proteins to numerous downstream genes. Bone morphogenetic proteins (BMPs), having clock-controlled regulatory sites in their gene promoters, are expressed in the uterus during decidualization, but the regulation of the Bmp gene expression is poorly understood. The present study was designed to dissect the physiological roles of the uterus oscillators in the Bmp expression using the uterus endometrial stromal cells (UESCs) isolated from Per2-dLuc transgenic rats on day 4.5 of gestation. The in vitro decidualization of UESCs was induced by medroxyprogesterone acetate and 2-O-dibutyryl cAMP. A significant decline of Per2-dLuc bioluminescence activity was induced in decidual cells, and concomitantly, the expression of canonical clock genes was downregulated. Conversely, the expression of the core Bmp genes Bmp2, Bmp4, Bmp6, and Bmp7 was upregulated. In UESCs transfected with Bmal1-specific siRNA, in which Rev-erbα expression was downregulated, Bmp genes, such as Bmp2, Bmp4, and Bmp6 were upregulated. However, Bmp1, Bmp7, and Bmp8a were not significantly affected by Bmal1 silencing. The expression of all Bmp genes was enhanced after treatment with the REV-ERBα antagonist (SR8278), although their rhythmic profiles were differed from each other. The binding of REV-ERBα to the proximal regions of the Bmp2 and Bmp4 promoters was revealed by chromatin immunoprecipitation-PCR analysis. Collectively, these results indicate that the Bmp genes are upregulated by the attenuation of the cellular circadian clock; in particular, its core component REV-ERBα functions as a transcriptional silencer in the Bmp gene family.
Breast cancer is the most frequent tumor in women, and in nearly two-thirds of cases, the tumors express estrogen receptor α (ERα, encoded by ESR1). Here, we performed whole-exome sequencing of 16 breast cancer tissues classified according to ESR1 expression and 12 samples of whole blood, and detected 310 somatic mutations in cancer tissues with high levels of ESR1 expression. Of the somatic mutations validated by a different deep sequencer, a novel nonsense somatic mutation, c.2830 C>T; p.Gln944*, in transcriptional regulator switch-independent 3 family member A (SIN3A) was detected in breast cancer of a patient. Part of the mutant protein localized in the cytoplasm in contrast to the nuclear localization of ERα, and induced a significant increase in ESR1 mRNA. The SIN3A mutation obviously enhanced MCF7 cell proliferation. In tissue sections from the breast cancer patient with the SIN3A c.2830 C>T mutation, cytoplasmic SIN3A localization was detected within the tumor regions where nuclear enlargement was observed. The reduction in SIN3A mRNA correlates with the recurrence of ER-positive breast cancers on Kaplan-Meier plots. These observations reveal that the SIN3A mutation has lost its transcriptional repression function due to its cytoplasmic localization, and that this repression may contribute to the progression of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.