These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
Ultrafast real-time optical imaging is an indispensable tool for studying dynamical events such as shock waves, chemical dynamics in living cells, neural activity, laser surgery and microfluidics. However, conventional CCDs (charge-coupled devices) and their complementary metal-oxide-semiconductor (CMOS) counterparts are incapable of capturing fast dynamical processes with high sensitivity and resolution. This is due in part to a technological limitation-it takes time to read out the data from sensor arrays. Also, there is the fundamental compromise between sensitivity and frame rate; at high frame rates, fewer photons are collected during each frame-a problem that affects nearly all optical imaging systems. Here we report an imaging method that overcomes these limitations and offers frame rates that are at least 1,000 times faster than those of conventional CCDs. Our technique maps a two-dimensional (2D) image into a serial time-domain data stream and simultaneously amplifies the image in the optical domain. We capture an entire 2D image using a single-pixel photodetector and achieve a net image amplification of 25 dB (a factor of 316). This overcomes the compromise between sensitivity and frame rate without resorting to cooling and high-intensity illumination. As a proof of concept, we perform continuous real-time imaging at a frame speed of 163 ns (a frame rate of 6.1 MHz) and a shutter speed of 440 ps. We also demonstrate real-time imaging of microfluidic flow and phase-explosion effects that occur during laser ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.