To enable suppression of two-magnon scattering (TMS) in nanometer-thick Co (ultrathin Co) layers and realize low-magnon damping in such layers, the magnon damping in ultrathin Co layers grown on various nonmagnetic seed layers with different surface magnetic anisotropy (SMA) energies are investigated. We verify the significantly weak magnon damping realized by varying the seeding layer species used. Although TMS is enhanced in ultrathin Co on Cu and Al seeding layers, the insertion of a Ti seeding layer below the ultrathin Co greatly suppresses the TMS, which is attributed to suppression of the SMA at the interface between Co and Ti. The Gilbert damping constant of the ultrathin Co layer on Ti (3 nm), 0.020, is comparable to the value for bulk Co, although the Co layer thickness here is only 2 nm. Realization of such weak magnon damping can open the door to tunable magnon excitation, thus enabling coupling of magnons with other quanta such as photons, given that the magnetization of ultrathin ferromagnets can be tuned using an external electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.