BackgroundTo improve the clinical outcome of patients who suffered ischemic stroke, cerebral ischemia-reperfusion (I/R) injury is one of the major concerns that should be conquered. Inflammatory reactions are considered a major contributor to brain injury following cerebral ischemia, and I/R exacerbates these reactions. The aim of this study was to investigate the possible ameliorative effects of progranulin (PGRN) against I/R injury in mice.MethodsIn vivo I/R was induced in four-week-old male ddY mice by 2 h of MCAO (middle cerebral artery occlusion) followed by 22 h of reperfusion. We evaluate expression of PGRN in I/R brain, efficacy of recombinant-PGRN (r-PGRN) treatment and its therapeutic time-window on I/R injury. Two hours after MCAO, 1.0 ng of r-PRGN or PBS was administered via intracerebroventricular. We assess neutrophil infiltration, expression of tumor necrosis factor (TNF)-α, matrix metalloproteinase-9 (MMP-9) and phosphorylation of nuclear factor-κB (NF-κB) by immunofluorescense staining and Western blotting. We also investigate neutrophil chemotaxis and intercellular adhesion molecule-1 (ICAM-1) expression in vitro inflammation models using isolated neutrophils and endothelial cells.ResultsWe found that expression of PGRN was decreased in the I/R mouse brain. r-PGRN treatment at 2 h after MCAO resulted in a reduction in the infarct volume and decreased brain swelling; this led to an improvement in neurological scores and to a reduction of mortality rate at 24 h and 7 d after MCAO, respectively. Immunohistochemistry, Western blotting, and gelatin zymography also confirmed that r-PGRN treatment suppressed neutrophil recruitment into the I/R brain, and this led to a reduction of NF-κB and MMP-9 activation. In the in vitro inflammation models, PGRN suppressed both the neutrophil chemotaxis and ICAM-1 expression caused by TNF-α in endothelial cells.ConclusionsPGRN exerted ameliorative effects against I/R-induced inflammation, and these effects may be due to the inhibition of neutrophil recruitment into the I/R brain.
Accumulating evidence shows that post-ischemic inflammation originated by Toll-like receptors (TLR) plays critical roles in ischemic stroke. However, the functions of other innate immune receptors are poorly understood in cerebral ischemia. Macrophage-inducible C-type lectin, Mincle, is one of the innate immune receptor C-type lectin-like receptor (CLR) to response against dying cells. In the present study, we showed that Mincle, its ligand SAP130, and its downstream phospho-Syk/Syk were upregulated after ischemia, and that Mincle is expressed in immune and non-immune cells in the ischemic brains of mice and human. We treated mice with piceatannol, a Syk inhibitor, and consequently the infarct volume and swelling were suppressed by piceatannol. The levels of phospho-Syk, MMP9 and ICAM-1 were downregulated, and the level of Claudin5 was uplegurated in piceatannol-treated groups. These data indicate that innate immune system, such as Mincle and Syk plays a pivotal role in the pathogenesis after the ischemia and reperfusion.
The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy, spectroscopy), histological and neurobehavioral measures to assess the effects of the treatment at 18 h and 7 days after the reperfusion. To further investigate the mechanism of cilostazol to beneficial effect, we also performed an in vitro study with tPA and a phosphodiesterase-III inhibitor in human brain microvascular endothelial cells, pericytes, and astrocytes. Combination therapy with tPA plus cilostazol prevented development of hemorrhagic transformation, reduced brain edema, prevented endothelial injury via reduction MMP-9 activity, and prevented the blood-brain barrier opening by inhibiting decreased claudin-5 expression. These changes significantly reduced the morbidity and mortality at 18 h and 7 days after the reperfusion. Also, the administration of both drugs prevented injury to brain human endothelial cells and human brain pericytes. The present study indicates that a phosphodiesterase-III inhibitor prevents the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA.
Recent data have shown that TLR4 performs a key role in cerebral ischemia-reperfusion injury which serves as the origin of the immunological inflammatory reactions. However, the therapeutic effects of pharmacological inhibitions of TLR4 and its immediate down-stream pathway remain to be uncovered. In the present study, on mice, intracerebroventricular injection of resatorvid (TLR4 signal inhibitor; 0.01 μg) significantly reduced infarct volume and improved neurological score after middle cerebral artery occlusion and reperfusion. The levels of phospho-p38, nuclear factor-kappa B, and matrix metalloproteinase 9 expressions were significantly suppressed in the resatorvid-treated group. In addition, NOX4 associates with TLR4 after cerebral ischemia-reperfusion seen in mice and human. Genetic and pharmacological inhibitions of TLR4 each reduced NOX4 expression, leading to suppression of oxidative/nitrative stress and of neuronal apoptosis. These data suggest that resatorvid has potential as a therapeutic agent for stroke since it inhibits TLR4-NOX4 signaling which may be the predominant causal pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.