Functionally distinct CD4 + helper T (Th) cell subsets, including Th1, Th2, Th17, and regulatory T cells (Treg), play a pivotal role in the regulation of acquired immunity. Although the key proteins involved in the regulation of Th cell differentiation have already been identified, how the proteogenomic landscape changes during the Th cell activation remains unclear. To address this issue, we characterized proteogenomic signatures of differentiation to each Th cell subsets by RNA sequencing and liquid chromatography-assisted mass spectrometry, which enabled us to simultaneously quantify more than 10,000 protein-coding transcripts and 8,000 proteins in a single-shot. The results indicated that T-cell receptor activation affected almost half of the transcript and protein levels in a low correlative and gene-specific manner, and specific cytokine treatments modified the transcript and protein profiles in a manner specific to each Th cell subsets: Th17 and Tregs particularly exhibited unique proteogenomic signatures compared to other Th cell subsets. Interestingly, the in-depth proteome data revealed that mRNA profiles alone were not enough to delineate functional changes during Th cell activation, suggesting that the proteogenomic dataset obtained in this study serves as a unique and indispensable data resource for understanding the comprehensive molecular mechanisms underlying effector Th cell differentiation.
Metabolic fluxes involving fatty acid biosynthesis play essential roles in controlling the differentiation of T helper 17 (T H 17) cells. However, the exact enzymes and lipid metabolites involved, as well as their link to promoting the core gene transcriptional signature required for the differentiation of T H 17 cells, remain largely unknown. From a pooled CRISPR-based screen and unbiased lipidomics analyses, we identified that 1-oleoyl-lysophosphatidylethanolamine could act as a lipid modulator of retinoid-related orphan receptor gamma t (RORγt) activity in T H 17 cells. In addition, we specified five enzymes, including Gpam , Gpat3 , Lplat1 , Pla2g12a , and Scd2 , suggestive of the requirement of glycerophospholipids with monounsaturated fatty acids being required for the transcription of Il17a . 1-Oleoyl-lysophosphatidylethanolamine was reduced in Pla2g12a -deficient T H 17 cells, leading to the abolition of interleukin-17 (IL-17) production and disruption to the core transcriptional program required for the differentiation of T H 17 cells. Furthermore, mice with T cell–specific deficiency of Pla2g12a failed to develop disease in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Thus, our data indicate that 1-oleoyl-lysophosphatidylethanolamine is a lipid metabolite that promotes RORγt-induced T H 17 cell differentiation and the pathogenicity of T H 17 cells.
VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome has recently been described as an autoinflammatory disease associated with severe adult-onset inflammatory manifestations. The various clinical manifestations include recurrent high-grade fever, neutrophilic dermatoses, cutaneous vasculitis, chondritis of the ear and nose, pulmonary infiltrates, cytopenia, uveitis, gastrointestinal pain or inflammation, aortitis, hepatosplenomegaly, and hematological disorders. VEXAS syndrome is caused by somatic mutations of the ubiquitin-like modifier activating enzyme 1 (UBA1) gene in myeloid-lineage cells. It is characterized by vacuolated myeloid and erythroid progenitor cells seen by bone marrow biopsy. We report the case of a 64-year-old Japanese man with VEXAS syndrome. At age 63, he was referred to us with a recurrent erythema on the hands associated with a general fever of 38–40°C that had persisted for 4 or 5 days and had recurred about once a month for a year. The skin rash appeared 2 or 3 days after the onset of each fever episode. Computed tomography (CT) of the chest revealed bilateral hilar lymphadenopathy (BHL), and the mediastinal lymph nodes were swollen. Sarcoidosis was suspected but was ruled out by several tests. Laboratory examinations showed elevated inflammatory markers. Bone marrow examination showed the vacuolization of myeloid precursor cells. A skin biopsy revealed dense dermal, predominantly perivascular, infiltrates. These consisted of mature neutrophils admixed with myeloperoxidase-positive CD163-positive myeloid cells, lymphoid cells and eosinophils. Sequencing analysis identified the somatic UBA1 variant c.122T > C, which results in p.Met41Thr. Treatment with oral prednisone (15 mg/day) and monthly intravenous tocilizumab injections (400 mg) completely resolved the symptoms. Neutrophils are a major source of reactive oxygen species, and the present case demonstrated numerous neutrophilic infiltrates. We hypothesize that the patient might have had elevated derivatives of reactive oxygen metabolites (d-ROMs). d-ROM quantification is a simple method for detecting hydroperoxide levels, and clinical trials have proven it useful for evaluating oxidative stress. In this study, we measured serum d-ROM before and after oral prednisone and tocilizumab treatment. The levels decreased significantly during treatment.
Next-generation DNA sequencing (NGS) in short-read mode has been recently used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, focusing mostly on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains mostly unexplored despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions using 10 genome sequence features on the basis of real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). We used the obtained metrics, designated “UNMET score,” along with other lines of structural information of the human genome to identify difficult-to-sequence genomic regions using conventional NGS. Thus, the UNMET score could provide appropriate caveats to address potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.