Olivine is a principal anhydrous silicate mineral in chondritic meteorites. The structure of this mineral is composed of independent SiO4 tetrahedra linked by divalent cations (mainly Mg). Under hydrothermal conditions, olivine is transformed into serpentine, which is a major hydrated phyllosilicate in the matrix of carbonaceous chondrites. Although carbonaceous chondrites contain various types of organic matter, the interaction between organic compounds and olivine at low temperature has not been considered in the literature. We performed an experiment to test the adsorption of N‐containing organic compounds (i.e., alkylpyridines and alkylimidazoles) on olivine using liquid chromatography under aqueous conditions (pH = 2.5–10.5) at 20–40 °C. The N‐containing cyclic compounds were interacted with the SiO4 tetrahedra of olivine and their different adsorption abilities depended on the organic structures. Because alkylpyridines often occur at different locations than alkylimidazoles in carbonaceous chondrites, the results of this study suggest that olivine can separate the N‐containing compounds associated with aqueous fluid flows by asteroidal chromatography in the meteorite parent body. Liquid chromatography based on solid phase minerals may hence be a useful technique for simulating the behavior of organic compounds in carbonaceous asteroids under aqueous activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.