Chronic inflammation promotes the progression of diabetic nephropathy (DN). However, the role of TNF-α remains unclear. The objectives of the present study were to examine whether TNF-α inhibition with a soluble TNF receptor (TNFR)2 fusion protein, i.e., etanercept (ETN), improves the early stage of DN in the type 2 diabetic model of the KK-Ay mouse and to also investigate which TNF pathway, TNFR1 or TNFR2, is predominantly involved in the progression of this disease. ETN was injected intraperitoneally into mice for 8 wk. Renal damage was evaluated by immunohistochemistry, Western blot analysis, and/or real-time PCR. In vitro, mouse tubular proximal cells were stimulated by TNF-α and/or high glucose (HG) and treated with ETN. ETN dramatically improved not only albuminuria but also glycemic control. Renal mRNA and/or protein levels of TNFR2, but not TNF-α and TNFR1, in ETN-treated KK-Ay mice were significantly decreased compared with untreated KK-Ay mice. mRNA levels of ICAM-1, VCAM-1, and monocyte chemoattractant protein-1 and the number of F4/80-positive cells were all decreased after treatment. Numbers of cleaved caspase-3- and TUNEL-positive cells in untreated mice were very few and were not different from ETN-treated mice. In vitro, stimulation with TNF-α or HG markedly increased both mRNA levels of TNFRs, unlike in the in vivo case. Furthermore, ETN partly recovered TNF-α-induced but not HG-induced TNFR mRNA levels. In conclusion, it appears that ETN may improve the progression of the early stage of DN predominantly through inhibition of the anti-inflammatory action of the TNF-α-TNFR2 pathway.
Exercise is recommended for the management of type 2 diabetes, but its effects on diabetic nephropathy (DN) are still unknown. We hypothesized that appropriate exercise improves early DN via attenuation of inflammation and oxidative damage. Type 2 diabetic KK-A y mice, a spontaneous DN model, underwent two different kinds of exercise (i.e., moderate and low intensity). Sedentary mice or those undergoing an exercise regimen causing no significant body weight loss were used. We examined the urinary excretion of albumin, number of podocytes and macrophages, renal expressions of HIF-1α and MCP-1, and biomarkers of oxidative stress such as urinary 8-OHdG and serum SOD. Exercise reduced urinary levels of albumin and also maintained the number of podocytes in the exercised KK-A y mice independently of improvements of overweight and hyperglycemia, although moderate-intensity exercise increased expression of HIF-1α. Sedentary KK-A y mice showed increased expression of MCP-1 and infiltration of macrophage, increased urinary 8-OhdG, and decreased serum SOD levels compared with exercised KK-A y mice. On the whole, low-intensity exercise attenuates progression of early DN without affecting marked renal ischemia. Reduction rates of urinary albumin and maintained podocyte numbers, with parallel improvements in oxidative damage and inflammation, are related to beneficial effects of exercise in diabetic kidney disease.
The current study aimed to examine whether the levels of TNF receptors 1 and 2 (TNFR1 and TNFR2) in serum and urine were associated with other markers of kidney injury and renal histological findings, including TNFR expression, in IgA nephropathy (IgAN). The levels of the parameters of interest were measured by immunoassay in 106 biopsy-proven IgAN patients using samples obtained immediately before renal biopsy and in 34 healthy subjects. Renal histological findings were evaluated using immunohistochemistry. The levels of serum TNFRs were higher in IgAN patients than in healthy subjects. The levels of both TNFRs in serum or urine were strongly correlated with each other (r > 0.9). Serum TNFR levels were positively correlated with the urinary protein to creatinine ratio (UPCR) and four markers of tubular damage of interest (N-acetyl-β-D-glucosaminidase [NAG], β2 microglobulin [β2m], liver-type fatty acid-binding protein [L-FABP], and kidney injury molecule-1 [KIM-1]) and negatively correlated with estimated glomerular filtration rate (eGFR). Patients in the highest tertile of serum TNFR levels showed more severe renal interstitial fibrosis than did those in the lowest or second tertiles. The tubulointerstitial TNFR2-, but not TNFR1-, positive area was significantly correlated with the serum levels of TNFRs and eGFR. Stepwise multiple regression analysis revealed that elevated serum TNFR1 or TNFR2 levels were a significant determinant of renal interstitial fibrosis after adjusting for eGFR, UPCR, and other markers of tubular damage. In conclusion, elevated serum TNFR levels were significantly associated with the severity of renal interstitial fibrosis in IgAN patients. However, the source of TNFRs in serum and urine remains unclear.
It is important to treat hypertension and anemia to prevent LVH in CKD patients. These findings have some therapeutic implications for treatment strategies for predialysis patients.
Background/Aims: Previous studies have shown the presence of high levels of glycoxidation and lipid peroxidation products in association with atherosclerosis in patients with end-stage kidney disease. Acetates are commonly used buffer for correcting metabolic acidosis in hemodialysis (HD) patients. Since the toxic effects of acetates are well established, acetate-free citrate dialysate (AFD) has become available in Japan. The objective of the present study was to evaluate the suppressive effects of AFD on oxidative stress in maintenance HD patients by measuring plasma pentosidine and malondialdehyde-modified low-density lipoprotein (MDA-LDL) levels as markers for glycoxidation and lipid peroxidation products. Methods: Plasma pentosidine, MDA-LDL and other laboratory parameters were examined on maintenance HD at the Juntendo University Hospital before and after switching to AFD. Results: MDA-LDL levels divided by LDL cholesterol were significantly lower than those before switching to AFD. Furthermore, levels of plasma pentosidine were lower than those before switching to AFD. Stepwise multiple regression analysis revealed that the percent change of the calcium-phosphorus product in the nondiabetic group and that of phosphorus in the diabetic group were predictive variables for the percent change of MDA-LDL/LDL, whereas the percent change of log high-sensitive C-reactive protein and that of systolic blood pressure in the nondiabetic group and that of diastolic blood pressure in the diabetic group were predictive variables for the percent change of plasma pentosidine. Conclusions: It appears that AFD decreases glycoxidation and lipid peroxidation products when compared with acid citrate dextrose in HD patients. The reduction of oxidative stress by AFD during HD may have possible beneficial effects on atherosclerosis through calcium-phosphorus metabolism and blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.