In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19.
Roundabout guidance receptor 4 (Robo4) is an endothelial cellspecific receptor that stabilizes the vasculature in pathological angiogenesis. Although Robo4 has been shown to suppress vascular hyperpermeability induced by vascular endothelial growth factor (VEGF) in angiogenesis, the role of Robo4 in inflammation is poorly understood. In this study, we investigated the role of Robo4 in vascular hyperpermeability during inflammation. Endotoxemia models using Robo4 −/− mice showed increased mortality and vascular leakage. In endothelial cells, Robo4 suppressed tumor necrosis factor α (TNFα)-induced hyperpermeability by stabilizing VE-cadherin at cell junctions, and deletion assays revealed that the C-terminus of Robo4 was involved in this suppression. Through binding and localization assays, we demonstrated that in endothelial cells, Robo4 binds to TNF receptor-associated factor 7 (TRAF7) through interaction with the C-terminus of Robo4. Gain-and loss-offunction studies of TRAF7 with or without Robo4 expression showed that TRAF7 is required for Robo4-mediated suppression of hyperpermeability. Taken together, our results demonstrate that the Robo4-TRAF7 complex is a novel negative regulator of inflammatory hyperpermeability. We propose this complex as a potential future target for protection against inflammatory diseases.
A current bottleneck in the development of central nervous system (CNS) drugs is the lack of drug delivery systems targeting the CNS. The intercellular space between endothelial cells of the blood-brain barrier (BBB) is sealed by complex protein-based structures called tight junctions (TJs). Claudin-5 (CLDN-5), a tetra-transmembrane protein is a key component of the TJ seal that prevents the paracellular diffusion of drugs into the CNS. In the present study, to investigate whether CLDN-5 binders can be used for delivery of drugs to the CNS, we generated monoclonal antibodies (mAbs) specific to the extracellular domains of CLDN-5. In an in vitro model of the BBB, the anti-CLDN-5 mAbs attenuated trans-epithelial/endothelial electrical resistance and enhanced solute permeation. These anti-CLDN-5 mAbs are potential leads for the development of novel drug delivery systems targeting the CNS.
Vascular endothelial protein tyrosine phosphatase (VE-PTP) influences endothelial barrier function by regulating the activation of tyrosine kinase receptor Tie2. We determined whether this action is linked to the development of atherosclerosis by examining the influence of arterial shear stress on VE-PTP, Tie2 activation, plasma leakage, and atherogenesis. We found that exposure to high average shear stress led to downstream polarization and endocytosis of VE-PTP accompanied by Tie2 activation at cell junctions. In aortic regions with disturbed flow, VE-PTP was not redistributed away from Tie2. Endothelial cells exposed to high shear stress had greater Tie2 activation and less macromolecular permeability than regions with disturbed flow. Deleting endothelial VE-PTP in VE-PTP iECKO mice increased Tie2 activation and reduced plasma leakage in atheroprone regions. ApoE À/À mice bred with VE-PTP iECKO mice had less plasma leakage and fewer atheromas on a high-fat diet. Pharmacologic inhibition of VE-PTP by AKB-9785 had similar anti-atherogenic effects. Together, the findings identify VE-PTP as a novel target for suppression of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.