The identification of human CD34-negative (CD34−) hematopoietic stem cells (HSCs) provides a new concept for the hierarchy in the human HSC compartment. Previous studies demonstrated that CD34− severe combined immunodeficiency (SCID)-repopulating cells (SRCs) are a distinct class of primitive HSCs in comparison to the well-characterized CD34+CD38− SRCs. However, the purification level of rare CD34− SRCs in 18 lineage marker-negative (Lin−) CD34− cells (1/1000) is still very low compared with that of CD34+CD38− SRCs (1/40). As in the mouse, it will be necessary to identify useful positive markers for a high degree of purification of rare human CD34− SRCs. Using 18Lin−CD34− cells, we analyzed the expression of candidate positive markers by flow cytometric analysis. We finally identified CD133 as a reliable positive marker of human CB-derived CD34− SRCs and succeeded in highly purifying primitive human CD34− HSCs. The limiting dilution analysis demonstrated that the incidence of CD34− SRCs in 18Lin−CD34−CD133+ cells was 1/142, which is the highest level of purification of these unique CD34− HSCs to date. Furthermore, CD133 expression clearly segregated the SRC activities of 18Lin−CD34− cells, as well as 18Lin−CD34+ cells, in their positive fractions, indicating its functional significance as a common cell surface maker to isolate effectively both CD34+ and CD34− SRCs.
Hematopoietic stem cells (HSCs) are maintained in a specialized bone marrow (BM) niche, which consists of osteoblasts, endothelial cells, and a variety of mesenchymal stem/stromal cells (MSCs).However, precisely what types of MSCs support human HSCs in the BM remain to be elucidated because of their heterogeneity. In this study, we succeeded in prospectively isolating/establishing three types of MSCs from human BM-derived lineage-and CD45-negative cells, according to their cell surface expression of CD271 and stage-specific embryonic antigen (SSEA)24. Among them, the MSCs established from the Lineage1 SSEA-4 1 fraction (DP MSC) could differentiate into osteoblasts and chondrocytes, but they lacked adipogenic differentiation potential. The DP MSCs expressed significantly higher levels of well-characterized HSC-supportive genes, including IGF-2, Wnt3a, Jagged1, TGFb3, nestin, CXCL12, and Foxc1, compared with other MSCs. Interestingly, these osteo-chondrogenic DP MSCs possessed the ability to support cord blood-derived primitive human CD34-negative severe combined immunodeficiency-repopulating cells. The HSCsupportive actions of DP MSCs were partially carried out by soluble factors, including IGF-2, Wnt3a, and Jagged1. Moreover, contact between DP MSCs and CD34-positive (CD34 1 ) as well as CD34-negative (CD34 2 ) HSCs was important for the support/maintenance of the CD34 1/2 HSCs in vitro. These data suggest that DP MSCs might play an important role in the maintenance of human primitive HSCs in the BM niche. Therefore, the establishment of DP MSCs provides a new tool for the elucidation of the human HSC/niche interaction in vitro as well as in vivo. STEM CELLS 2015;33:1554-1565
We previously identified CD34-negative (CD34−) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34− HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34− HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34− HSCs. We find that the purified CD34− HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34− HSCs. Based on these data, we propose a revised road map for the commitment of human CD34− HSCs in cord blood.
SummaryIt is generally thought that the proliferative capacity and differentiation potential of somatic stem cells, including mesenchymal stromal/stem cells (MSCs) and hematopoietic stem cells, decline with age. We investigated the effects of aging on human bone-derived MSCs expressing CD271 and SSEA-4 (double-positive MSCs [DPMSCs]). The percentages of DPMSCs in bone tissue decreased significantly with age. The DPMSCs from elderly patients (old DPMSCs) showed cellular senescence, which was evidenced by low growth potential, high senescence-associated β-galactosidase activity, and elevated p16 and p21 CDK inhibitor levels. Moreover, old DPMSCs showed weak osteogenic differentiation potential and less hematopoiesis-supporting activity in comparison with young DPMSCs. Interestingly, the addition of transforming growth factor β2 (TGF-β2) induced cellular senescence in young DPMSCs. With the exception of the adipogenic differentiation potential, all of the aging phenomena observed in old DPMSCs were reversed by the addition of anti-TGF-β antibodies. These results suggest that, in part, old DPMSCs accelerate cellular senescence through TGF-β signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.