Beclin 1, a protein essential for autophagy, binds to hVps34/Class III phosphatidylinositol-3-kinase and UVRAG. Here, we have identified two Beclin 1 associated proteins, Atg14L and Rubicon. Atg14L and UVRAG bind to Beclin 1 in a mutually exclusive manner, whereas Rubicon binds only to a subpopulation of UVRAG complexes; thus, three different Beclin 1 complexes exist. GFP-Atg14L localized to the isolation membrane and autophagosome, as well as to the ER and unknown puncta. Knockout of Atg14L in mouse ES cells caused a defect in autophagosome formation. GFP-Rubicon was localized at the endosome/lysosome. Knockdown of Rubicon caused enhancement of autophagy, especially at the maturation step, as well as enhancement of endocytic trafficking. These data suggest that the Beclin 1-hVps34 complex functions in two different steps of autophagy by altering the subunit composition.
Rubicon is overexpressed and plays a pathogenic role in NAFLD by accelerating hepatocellular lipoapoptosis and lipid accumulation, as well as inhibiting autophagy. Rubicon may be a novel therapeutic target for regulating NAFLD development and progression. (Hepatology 2016;64:1994-2014).
Rubicon, a subunit of the Beclin 1-PI3-kinase complex and its homologue, PLEKHM1, negatively regulate endocytic pathway through the interaction with Rab7. Synchronous association with the Beclin 1–PI3-kinase complex and Rab7 is necessary for the function of Rubicon, but not PLEKHM1.
Highlights d Established live cell imaging system to visualize HCV assembly events d Determined conditions for recruitment of viral proteins to putative assembly sites d HCV induces wrapping of lipid droplets by ER membranes at putative assembly sites d Wrapping membranes are linked to double membrane vesicles, the HCV replication sites
Autophagy is a bulk degradation pathway that removes cytosolic materials to maintain cellular homeostasis. The autophagy-related gene 13 (Atg13) and microtubule associate protein 1 light chain 3 (LC3) proteins are required for autophagosome formation. We demonstrate that each of the human LC3 isoforms (LC3A, LC3B, and LC3C) interacts with Atg13 via the LC3 interacting region (LIR) of Atg13. Using X-ray crystallography, we solved the macromolecular structures of LC3A and LC3C, along with the complex structures of the LC3 isoforms with the Atg13 LIR. Together, our structural and binding analyses reveal that the side-chain of Lys49 of LC3 acts as a gatekeeper to regulate binding of the LIR. We verified this observation by mutation of Lys49 in LC3A, which significantly reduces LC3A positive puncta formation in cultured cells. Our results suggest that specific affinity of the LC3 isoforms to the Atg13 LIR is required for proper autophagosome formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.