Asymmetric hydrogenation of acetophenone in the presence of Ru(II) catalysts coordinated by TolBINAP and a series of chiral 1,2-diamines was studied. The sense and degree of enantioselectivity were highly dependent on the N-substituents of the diamine ligands. The N-substituent effect was discussed in detail. Among these catalysts, the (S)-TolBINAP/(R)-DMAPEN-Ru(II) complex showed the highest enantioselectivity. The mode of enantioface selection was interpreted by using transition state models based on the X-ray structure of the catalyst precursor. The chiral catalyst effected the hydrogenation of alkyl aryl ketones and arylglyoxal dialkyl acetals to afford the chiral alcohol in >99% ee in the best cases. Hydrogenation of racemic benzoin methyl ether with the chiral catalyst through dynamic kinetic resolution gave the anti-alcohol (syn:anti = 3:97) in 98% ee, while the reaction of alpha-amidopropiophenones resulted in the syn-alcohols (syn:anti = 96:4 to >99:1) in >98% ee.
Binap catalyst doesn't dmapen expectations: In basified 2‐propanol, [RuCl2{(S)‐tol‐binap}{(R)‐dmapen}] (1, see picture, Ar=4‐CH3C6H4) catalyzes the highly enantioselective hydrogenation of a series of aryl vinyl ketones and affords the allylic alcohols in high yields with up to 98 % ee. Formation of the saturated ketones and alcohols is suppressed with triphenylphosphine when necessary.
Efficient isomerization: The title reaction was catalyzed by the [RuCl2{(S)-tol-binap}{(R)-dbapen}]/KOH system in ethanol at 25 °C (see scheme). A series of E- and Z-configured aromatic and aliphatic allylic alcohols, including a simple primary alkyl-substituted compound (E)-3-methyl-2-hepten-1-ol, were transformed into the chiral aldehydes with at least 99 % ee. dbapen = 2-dibutylamino-1-phenylethylamine, tol-binap = 2,2'-bis(di-4-tolylphosphanyl)-1,1'-binaphthyl.
[reaction: see text] A catalyst system consisting of RuCl2[(S)-tolbinap][(R)-dmapen] and t-C4H9OK in 2-propanol effects asymmetric hydrogenation of arylglyoxal dialkylacetals to give the alpha-hydroxy acetals in up to 98% ee. Hydrogenation of racemic alpha-amidopropiophenones under dynamic kinetic resolution predominantly gives the syn alcohols in up to 99% ee and >98% de, while the reaction of racemic bezoin methyl ether gives the anti alcohols in excellent stereoselectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.