Objective-Resveratrol (3,5,4Ј-trihydroxystilbene), a polyphenol found in red wine, is known to activate sirtuin1 (SIRT1), a longevity gene. Previous studies have demonstrated that resveratrol extends the life span of diverse species through activation of SIRT1. It was also reported that inhibition of angiotensin II function by angiotensin II type I receptor (AT1R) antagonist prolonged rat life span. We, therefore, hypothesized that resveratrol may inhibit the renin-angiontein system and examined whether resveratrol affects AT1R expression in vascular smooth muscle cells (VSMCs). Methods and Results-Northern and Western blot analysis revealed that resveratrol significantly decreased the expression of AT1R at mRNA and protein levels in a dose-and time-dependent manner. Overexpression of SIRT1 reduced AT1R expression whereas nicotinamide, an inhibitor of SIRT1, increased AT1R expression and reversed the resveratrolinduced AT1R downregulation. AT1R gene promoter activity was decreased by resveratrol, but resveratrol did not affect the AT1R mRNA stability. Deletion analysis showed that the most proximal region of AT1R gene promoter containing Sp1 site is responsible for downregulation. Administration of resveratrol suppressed AT1R expression in the mouse aorta and blunted angiotensin II-induced hypertension. Conclusion-Resveratrol suppressed AT1R expression through SIRT1 activation both in vivo and in vitro. The inhibition of the renin-angiotensin system may contribute, at least in part, to the resveratrol-induced longevity and antiatherogenic effect of resveratrol.
Our data provides a novel insight into an effect of telmisartan: telmisartan inhibits AT1R gene expression through PPARgamma activation. The dual inhibition of angiotensin II function by telmisartan - AT1R blockade and downregulation - would contribute to more complete inhibition of the renin-angiotensin system.
Objective-Prolyl hydroxylase domain-containing proteins (PHDs) play pivotal roles in oxygen-sensing system through the regulation of ␣-subunit of hypoxia-inducible factor (HIF), a key transcription factor governing a large set of gene expression to adapt hypoxia. Although tissue hypoxia plays an essential role in maintaining inflammation, the role of PHDs in the inflammatory responses has not been clearly determined. Here, we investigated the role of PHDs in lipopolysaccharide (LPS)-induced tumor necrosis factor ␣ (TNF-␣) induction in macrophages. Methods and Results-Northern blot analysis and ELISA revealed that LPS-induced TNF-␣ upregulation was strongly suppressed by PHD inhibitors, dimethyloxallyl glycine (DMOG), and TM6008 in RAW264.7 macrophages. DMOG suppressed LPS-induced TNF-␣ upregulation in HIF-1␣-depleted cells and HIF-1␣ overexpression failed to suppress the induction of TNF-␣. DMOG rather suppressed LPS-induced NF-B transcriptional activity. Downregulation of Phd1 or Phd2 mRNA by RNA interference partially attenuated LPS-induced TNF-␣ induction. DMOG also inhibited LPS-induced TNF-␣ production in peritoneal macrophages as well as human macrophages. Conclusions-PHD inhibition by DMOG or RNA interference inhibited LPS-induced TNF-␣ upregulation in macrophages possibly through NF-B inhibition, which is independent of HIF-1␣ accumulation. This study suggests that PHDs are positive regulators of LPS-induced inflammatory process, and therefore inhibition of PHD may be a novel strategy for the treatment of inflammatory diseases. Key Words: tumor necrosis factor -alpha Ⅲ prolyl hydroxylase domain-containing protein Ⅲ hypoxia-inducible factor Ⅲ inflammation Ⅲ hypoxia I nflammation is a fundamental process for the protection of our body against outside pathogen. Tissues with inflammation are characterized by several features including the accumulation of inflammatory cells such as macrophages, lymphocytes, and neutrophils, limited blood supply attributable to impaired local microcirculation, and abnormal angiogenesis. 1 Inflammatory cells are metabolically active and consume a large amount of oxygen and nutrient. These cells are, therefore, eventually exposed to hypoxic and nutrient-deprived condition. 2 Thus, the inflammatory cells need to adapt these hypoxic conditions to perpetuate inflammatory reaction. 3 The reduced oxygen concentration is directly sensed by an innate oxygen-sensing system. 4 -6 The hypoxia-inducible factor (HIF) is a key transcription factor that mediates cellular adaptive responses to hypoxia. 7 HIF is a heterodimer consisting of an oxygen-labile ␣-subunit and a stable -subunit. The stability of the ␣-subunit of HIF-1 and HIF-2 (HIF-1␣ and HIF-2␣) is regulated through the hydroxylation at the 4-position of specific proline residues in HIF-1␣ and HIF-2␣ by prolyl hydroxylase domain-containing proteins (PHDs). 8,9 Because PHD activity depends on the availability of molecular oxygen, PHDs are able to serve as a sensor for oxygen concentration. Under normal oxygen concentration, HIF-␣ i...
Abstract-Telmisartan, an angiotensin II type 1 receptor antagonist, was reported to be a partial agonist of peroxisome proliferator-activated receptor-␥. Although peroxisome proliferator-activated receptor-␥ activators have been shown to have an anti-inflammatory effect, such as inhibition of cytokine production, it has not been determined whether telmisartan has such effects. We examined whether telmisartan inhibits expression of interleukin-6 (IL-6), a proinflammatory cytokine, in vascular smooth muscle cells. Telmisartan, but not valsartan, attenuated IL-6 mRNA expression induced by tumor necrosis factor-␣ (TNF-␣). Telmisartan decreased TNF-␣-induced IL-6 mRNA and protein expression in a dose-dependent manner. Because suppression of IL-6 mRNA expression was prevented by pretreatment with GW9662, a specific peroxisome proliferator-activated receptor-␥ antagonist, peroxisome proliferatoractivated receptor-␥ may be involved in the process. Telmisartan suppressed IL-6 gene promoter activity induced by TNF-␣. Deletion analysis suggested that the DNA segment between Ϫ150 bp and Ϫ27 bp of the IL-6 gene promoter that contains nuclear factor B and CCAAT/enhancer-binding protein- sites was responsible for telmisartan suppression. Telmisartan attenuated TNF-␣-induced nuclear factor B-and CCAAT/enhancer-binding protein--dependent gene transcription and DNA binding. Telmisartan also attenuated serum IL-6 level in TNF-␣-infused mice and IL-6 production from rat aorta stimulated with TNF-␣ ex vivo. These data suggest that telmisartan may attenuate inflammatory process induced by TNF-␣ in addition to the blockade of angiotensin II type 1 receptor. Because both TNF-␣ and angiotensin II play important roles in atherogenesis through enhancement of vascular inflammation, telmisartan may be beneficial for treatment of not only hypertension but also vascular inflammatory change. (Hypertension. 2009;53: 798-804.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.