Transition metal dichalcogenides such as MoS2 and WS2 are low-dimensional semiconductor materials. MoS2 and WS2 nanotubes and flakes were grown by a chemical transport reaction under a temperature gradient. I2 was used as a transport agent for previously synthesized MoS2 and WS2, respectively. These multilayered nanotubes are indirect bandgap semiconductors with a bandgap depending on their diameter. WS2 flakes were prepared by the sulfurization of thin WOx flakes. To increase the field enhancement of such low-dimensional structures by a higher aspect ratio, two approaches were examined: (a) the MoS2 and WS2 nanotubes were attached individually by a focused ion beam with Pt on dry etched n-type Si pillars and (b) the WS2 flakes were grown directly on the surface of the (n-type and p-type) Si pillars. Integral field emission measurements were performed in a diode configuration with a 50 μm mica spacer in a vacuum chamber at pressures of about 10−9 mbar. At a voltage of 900 V (18 MV/m), the integral emission current from the nanotubes is up to 11 μA for the lateral mounted MoS2 and about 1.3 μA (1.0 μA) for the upright mounted WS2 (MoS2). The onset voltage for a current of 1 nA is about 550 V for MoS2 and 500 V for WS2, respectively. The voltage conversion factor is in the range of 6 × 104–8 × 104 cm−1 for the nanotubes. The mounted MoS2 flakes show a field emission current of about 6 μA at 18 MV/m in contrast to the directly grown WS2 flakes, which show a pronounced saturation regime and, therefore, a lower emission current of about 0.5 μA is reached at 1500 V (25 MV/m). The WS2 flakes show a two times higher (1 × 105 cm−1) voltage conversion factor in comparison to the MoS2 flakes (5 × 104 cm−1). The extracted characteristics of the current-limiting part show a difference in the behavior of the extracted current-limiting characteristics between the lateral (linear) and upright mounted (exponential) nanotubes and the MoS2 flakes. In contrast, the WS2 flakes show charge carrier depletion effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.