To develop a machine learning (ML) model that predicts disease groups or autoantibodies in patients with idiopathic inflammatory myopathies (IIMs) using muscle MRI radiomics features. Twenty-two patients with dermatomyositis (DM), 14 with amyopathic dermatomyositis (ADM), 19 with polymyositis (PM) and 19 with non-IIM were enrolled. Using 2D manual segmentation, 93 original features as well as 93 local binary pattern (LBP) features were extracted from MRI (short-tau inversion recovery [STIR] imaging) of proximal limb muscles. To construct and compare ML models that predict disease groups using each set of features, dimensional reductions were performed using a reproducibility analysis by inter-reader and intra-reader correlation coefficients, collinearity analysis, and the sequential feature selection (SFS) algorithm. Models were created using the linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machine (SVM), k-nearest neighbors (k-NN), random forest (RF) and multi-layer perceptron (MLP) classifiers, and validated using tenfold cross-validation repeated 100 times. We also investigated whether it was possible to construct models predicting autoantibody status. Our ML-based MRI radiomics models showed the potential to distinguish between PM, DM, and ADM. Models using LBP features provided better results, with macro-average AUC values of 0.767 and 0.714, accuracy of 61.2 and 61.4%, and macro-average recall of 61.9 and 59.8%, in the LDA and k-NN classifiers, respectively. In contrast, the accuracies of radiomics models distinguishing between non-IIM and IIM disease groups were low. A subgroup analysis showed that classification models for anti-Jo-1 and anti-ARS antibodies provided AUC values of 0.646–0.853 and 0.692–0.792, with accuracy of 71.5–81.0 and 65.8–78.3%, respectively. ML-based TA of muscle MRI may be used to predict disease groups or the autoantibody status in patients with IIM and is useful in non-invasive assessments of disease mechanisms.
Objective To evaluate the diagnostic utility of conventional magnetic resonance imaging (MRI)-based characteristics and a texture analysis (TA) for discriminating between ovarian thecoma-fibroma groups (OTFGs) and ovarian granulosa cell tumors (OGCTs). Methods This retrospective multicenter study enrolled 52 patients with 32 OGCTs and 21 OTFGs, which were dissected and pathologically diagnosed between January 2008 and December 2019. MRI-based features (MBFs) and texture features (TFs) were evaluated and compared between OTFGs and OGCTs. A least absolute shrinkage and selection operator (LASSO) regression analysis was performed to select features and construct the discriminating model. ROC analyses were conducted on MBFs, TFs, and their combination to discriminate between the two diseases. Results We selected 3 features with the highest absolute value of the LASSO regression coefficient for each model: the apparent diffusion coefficient (ADC), peripheral cystic area, and contrast enhancement in the venous phase (VCE) for the MRI-based model; the 10th percentile, difference variance, and maximal correlation coefficient for the TA-based model; and ADC, VCE, and the difference variance for the combination model. The areas under the curves of the constructed models were 0.938, 0.817, and 0.941, respectively. The diagnostic performance of the MRI-based and combination models was similar (p = 0.38), but significantly better than that of the TA-based model (p < 0.05). Conclusions The conventional MRI-based analysis has potential as a method to differentiate OTFGs from OGCTs. TA did not appear to be of any additional benefit. Further studies are needed on the use of these methods for a preoperative differential diagnosis of these two diseases.
We evaluated a multiclass classification model to predict estimated glomerular filtration rate (eGFR) groups in chronic kidney disease (CKD) patients using magnetic resonance imaging (MRI) texture analysis (TA). We identified 166 CKD patients who underwent MRI comprising Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images, apparent diffusion coefficient (ADC) maps, and T2* maps. The patients were divided into severe, moderate, and control groups based on eGFR borderlines of 30 and 60 mL/min/1.73 m2. After extracting 93 texture features (TFs), dimension reduction was performed using inter-observer reproducibility analysis and sequential feature selection (SFS) algorithm. Models were created using linear discriminant analysis (LDA); support vector machine (SVM) with linear, rbf, and sigmoid kernels; decision tree (DT); and random forest (RF) classifiers, with synthetic minority oversampling technique (SMOTE). Models underwent 100-time repeat nested cross-validation. Overall performances of our classification models were modest, and TA based on T1-weighted IP/OP/WO images provided better performance than those based on ADC and T2* maps. The most favorable result was observed in the T1-weighted WO image using RF classifier and the combination model was derived from all T1-weighted images using SVM classifier with rbf kernel. Among the selected TFs, total energy and energy had weak correlations with eGFR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.