IntroductionGitelman syndrome (GS) is a tubulopathy exhibited by salt loss. GS cases are most often diagnosed by chance blood test. Aside from that, some cases are also diagnosed from tetanic symptoms associated with hypokalemia and/or hypomagnesemia or short stature. As for complications, thyroid dysfunction and short stature are known, but the incidence rates for these complications have not yet been elucidated. In addition, no genotype–phenotype correlation has been identified in GS.MethodsWe examined the clinical characteristics and genotype–phenotype correlation in genetically proven GS cases with homozygous or compound heterozygous variants in SLC12A3 (n = 185).ResultsIn our cohort, diagnostic opportunities were by chance blood tests (54.7%), tetany (32.6%), or short stature (7.2%). Regarding complications, 16.3% had short stature, 13.7% had experienced febrile convulsion, 4.3% had thyroid dysfunction, and 2.5% were diagnosed with epilepsy. In one case, QT prolongation was detected. Among 29 cases with short stature, 10 were diagnosed with growth hormone (GH) deficiency and GH replacement therapy started. Interestingly, there was a strong correlation in serum magnesium levels between cases with p.Arg642Cys and/or p.Leu858His and cases without these variants, which are mutational hotspots in the Japanese population (1.76 mg/dl vs. 1.43 mg/dl, P < 0.001).ConclusionThis study has revealed, for the first time, clinical characteristics in genetically proven GS cases in the Japanese population, including prevalence of complications. Patients with hypokalemia detected by chance blood test should have gene tests performed. Patients with GS need attention for developing extrarenal complications, such as short stature, febrile convulsion, thyroid dysfunction, epilepsy, or QT prolongation. It was also revealed for the first time that hypomagnesemia was not severe in some variants in SLC12A3.
We report unpredictable atypical splicing in the gene in male patients with XLAS and reveal that renal prognosis differs significantly for patients with truncating versus nontruncating splicing abnormalities. Our results suggest that splicing modulation should be explored as a therapy for XLAS with truncating mutations.
To understand the genetics of steroid-sensitive nephrotic syndrome (SSNS), we conducted a genome-wide association study in 987 childhood SSNS patients and 3,206 healthy controls with Japanese ancestry. Beyond known associations in the HLA-DR/DQ region, common variants in NPHS1-KIRREL2 (rs56117924, P[4.94E-20, odds ratio (OR) [1.90)
D-Amino acid oxidase (DAAO) catalyzes the oxidation of d-amino acids including d-serine, a coagonist of the N-methyl-d-aspartate receptor. We identified a series of 4-hydroxypyridazin-3(2H)-one derivatives as novel DAAO inhibitors with high potency and substantial cell permeability using fragment-based drug design. Comparisons of complex structures deposited in the Protein Data Bank as well as those determined with in-house fragment hits revealed that a hydrophobic subpocket was formed perpendicular to the flavin ring by flipping Tyr224 in a ligand-dependent manner. We investigated the ability of the initial fragment hit, 3-hydroxy-pyridine-2(1H)-one, to fill this subpocket with the aid of complex structure information. 3-Hydroxy-5-(2-phenylethyl)pyridine-2(1H)-one exhibited the predicted binding mode and demonstrated high inhibitory activity for human DAAO in enzyme- and cell-based assays. We further designed and synthesized 4-hydroxypyridazin-3(2H)-one derivatives, which are equivalent to the 3-hydroxy-pyridine-2(1H)-one series but lack cell toxicity. 6-[2-(3,5-Difluorophenyl)ethyl]-4-hydroxypyridazin-3(2H)-one was found to be effective against MK-801-induced cognitive deficit in the Y-maze.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.