Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently.
Two captive cheetahs from a zoo in Japan died of a severe fever with thrombocytopenia syndrome–like illness. Severe fever with thrombocytopenia syndrome virus, an endemic tickborne phlebovirus, was detected systemically with secretion of infectious viruses into the saliva. These cases highlight the risk for exposure of captive animals to endemic arthropodborne pathogens.
We detected ferret coronaviruses in 44 (55.7%) of 79 pet ferrets tested in Japan and classified the viruses into 2 genotypes on the basis of genotype-specific PCR. Our results show that 2 ferret coronaviruses that cause feline infectious peritonitis–like disease and epizootic catarrhal enteritis are enzootic among ferrets in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.