Halloysite is naturally available clay mineral with hollow cylindrical geometry and it is available in thousands of tons. Silver nanorods were synthesized inside the lumen of the halloysite by thermal decomposition of the silver acetate, which was loaded into halloysite from an aqueous solution by vacuum cycling. Images of individual ca. 15 nm diameter silver nanorods and nanoparticles were observed with TEM. The presence of silver inside the tubes was also verified with STEM-EDX elemental mapping. Nanorods had crystalline nature with [111] axis oriented ~68° from the halloysite tubule main axis. The composite of silver nanorods encased in clay tubes with the polymer paint was prepared, and the coating antimicrobial activity combined with tensile strength increase was demonstrated. Coating containing up 5% silver loaded halloysite did not change color after light exposure contrary to the sample prepared with loading with unshelled silver nanoparticles. Halloysite tube templates have a potential for scalable manufacturing of ceramic encapsulated metal nanorods for composite materials.
Controlling the organization of molecular building blocks at the nanometer level is of utmost importance, not only from the viewpoint of scientific curiosity, but also for the development of next-generation organic devices with electrical, optical, chemical, or biological functions. Self-assembly offers great potential for the manufacture of nanoarchitectures (nanostructures and nanopatterns) over large areas by using low-energy and inexpensive spontaneous processes. However, self-assembled structures in 3D media, such as solutions or solids, are not easily incorporated into current device-oriented nanotechnology. The scope of this review is therefore to introduce the expanding methodology for the construction of thin-film-based nanoarchitectures on solid surfaces and to try to address a general concept with emphasis on the availability of dynamic interfaces for the creation and manipulation of nanoarchitectures. In this review, the strategies for the construction of nanostructures, the control and manipulation of nanopatterns, and the application of nanoarchitectures are described; the construction strategies are categorized into three classes: i) π-conjugated molecular assembly in two dimensions, ii) bio-directed molecular assembly on surfaces, and iii) recent thin-film preparation technologies.
Charged substrates are expected to promote cell adhesion via electrostatic interaction, but it remains unclear how cells adhere to these substrates. Here, initial cell adhesion (<30 min) was re-examined on charged substrates in serum-containing and serum-free media to distinguish among various cell adhesion mechanisms (i.e., electrostatic interaction, hydrophobic interaction, and biological interaction). Cationic and anionic methacrylate copolymers were coated on nonionic nontissue culture-treated polystyrene to create charged substrates. Cells adhered similarly on cationic, anionic, and nonionic substrates in serum-free medium via integrin-independent mechanisms, but their adhesion forces differed (anionic > cationic > nonionic substrates), indicating that cell adhesion is not mediated solely by the cells' negative charge. In serum-containing medium, the cells adhered minimally on anionic and nonionic substrates, but they adhered abundantly on cationic substrates via both integrin-dependent and -independent mechanisms. These results suggest that neither electrostatic force nor protein adsorption is accountable for cell adhesion. Conclusively, the observed phenomena revealed a gap in the generally accepted understanding of cell adhesion mechanisms on charged polymeric substrates. A reanalysis of their mechanisms is necessary.
Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.
An effective approach for the dispersion of hydrophilic cellulose nanofiber (CNF) in hydrophobic high-density polyethylene (HDPE) is presented using adsorption of a diblock copolymer dispersant. The dispersant consists of both resin compatible poly(lauryl methacrylate) (PLMA) and cellulose interactive poly(2-hydroxyethyl methacrylate) blocks. The PLMA-adsorbed CNFs are characterized by FT-IR and contact angle measurement, revealing successful hydrophobization. X-ray CT imaging shows there are apparently less CNF aggregates in the nanocomposites if adding amount of the dispersant was enough. The good dispersion results in a high mechanical reinforcement, corresponding to 140% higher Young's modulus and 84% higher tensile strength than the neat HDPE. This approach is broadly applicable and allows for easy manufacturing process for strong and lightweight CNF-reinforced nanocomposite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.