This paper describes the application of micro-Doppler radar (MDR) to gait classification based on fall risk-related differences using deep learning and gait parameter-based approaches. Two classification problems were considered in this study: elderly non-fallers and multiple fallers were classified to investigate the detection of fall risk-related gait differences, and middle-aged (50s) and elderly (70s) adults were classified to detect aging-related gait differences. The MDR signal data of the participants were simulated using an open motion capture gait dataset. The classification results obtained using the deep learning and gait parameter-based approaches showed that the classification accuracy achieved using a support vector machine with the gait parameters extracted from the MDR signals was better than that resulting from the deep learning of spectrogram (time-velocity distribution) images of the MDR signals for both classification problems. The gait parameter-based approach achieved the classification rates of 79 % for faller/non-faller classification and 82 % for 50s/70s classification, whereas the corresponding accuracies were 73 % and 76 %, respectively, using the deep learning approach. These results reveal that the gait parameters extracted via MDR measurements include sufficient information on gait to detect individuals with a high risk of falls and the gait parameter-based approaches are thus effective for both classification problems.
This paper demonstrates the identification of 10 persons with 99% accuracy achieved by combining micro-Doppler signatures of sit-to-stand and stand-to-sit movements. Data from these movements are measured using two radars installed above and behind the person. Images of Doppler spectrograms generated using the measured data are combined and input to a convolutional neural network. Experimental results show the significantly better accuracy of the proposed method compared with conventional methods that do not perform data combination. The accuracy of identifying 10 participants having similar ages and physical features was 96-99%, despite the relatively small training set (number of training samples: 50-90 Doppler radar images per person). These results suggest that combining sit-to-stand and stand-to-sit movements provides sufficient information for accurate person identification and such information can be remotely acquired using Doppler radar measurements.
To develop a daily monitoring system for early detection of fall risk of elderly people during walking, this study presents a highly accurate micro-Doppler radar (MDR)-based gait classification method for the young and elderly adults. Our method utilizes a time-series of velocity corresponding to leg motion during walking extracted from the MDR spectrogram (time-velocity distribution) in an experimental study involving 300 participants. The extracted time-series was inputted to a long short-term memory recurrent neural network to classify the gaits of young and elderly participant groups. We achieved a classification accuracy of 94.9%, which is significantly higher than that of a previously presented velocity-parameter-based classification method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.